View More View Less
  • 1 Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006, Katowice, Poland
  • 2 Polish Academy of Sciences, Centre of Polymer and Carbon Materials, 5 Sowińskiego Street, 44-121, Gliwice, Poland
  • 3 Department of Pharmacognosy, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland
  • 4 Department of Inorganic Chemistry, Medical University of Lublin, 6 Staszica Street, 20-081, Lublin, Poland
Restricted access

Summary

The objective of this study was to explore the possibility of combining headspace gas chromatography with mass spectrometric detection (HS-GC-MS) and 13C NMR spectroscopy to enhance the detectability of components of the essential oils of medicinal plants of the Salvia genus. Preliminary investigations were performed with two sage species, Salvia lavandulifolia and Salvia triloba, known for particularly abundant yields of their respective essential oils. By use of HS-GC-MS, characteristic fingerprints of the volatile fractions were obtained for plant species from two different vegetation seasons (2007 and 2008). Partial identification of the components of these volatile fractions was performed, and comparison of the chromatographic fingerprints confirmed seasonal fingerprint similarity within the same species. Preliminary 13C NMR measurements resulted in well shaped spectra with an abundance of regularly distributed signals. This suggested the possibility of using 13C NMR spectroscopy in phytochemical research, in parallel with HS-GC-MS, to enhance the detectability of volatile components of plant species belonging to this genus.

  • [1]. M.E. Guynot S. Martin L. Seto V. Sanchis A.J. Ramos 2005 Food Sci. Technol. 11 2532.

  • [2]. D. Miladinović and Lj. Miladinović, 2, 97100 (2000).

  • [3]. Z. Popović M. Kostić S. Popović S. Skorić 2006 Biotechnol. Biotechnol. Eq. 20 3640.

  • [4]. J. Knežević-Vukčevič B. Vuković-Gačić T. Stević J. Stanojević B. Nikolić D. Simić 2006 Arch. Biol. Sci. (Belgrade) 57 163172.

    • Search Google Scholar
    • Export Citation
  • [5]. P. Bradesi A. Bighelli F. Tomi J. Casanova 1996 Can. J. Appl. Spectrosc. 41 1524.

  • [6]. P. Bradesi A. Bighelli F. Tomi J. Casanova 1996 Can. J. Appl. Spectrosc. 41 4150.

  • [7]. M.-L. Lota D. de Rocca Serra F. Tomi J. Casanova 2001 Biochem. Syst. Ecol. 29 77104.

  • [8]. S. Rezzi C. Cavaleiro A. Bighelli L. Salgueiro A. Proença da Cunha J. Casanova 2001 Biochem. Syst. Ecol. 29 179188.

  • [9]. B. Ferrari F. Tomi J. Casanova 2005 Biochem. Syst. Ecol. 33 445449.

  • [10]. J.B. Boti A. Muselli F. Tomi G. Koukoua T.Y. N'Guessan J. Costa J. Casanova 2006 C.R. Chimie 9 164168.

  • [11]. K. Liu P.-G. Rossi B. Ferrari L. Berti J. Casanova F. Tomi 2007 Phytochemistry 68 16981705.

  • [12]. Polish Pharmacopoeia VI, Polish Pharmaceutical Society, Warsaw, 2002.

  • [13]. J. Rzepa Wojtal D. Staszek G. Grygierczyk K. Labe M. Hajnos T. Kowalska M. Waksmundzka-Hajnos 2009 J. Chromatogr. Sci. 47 575580.

    • Search Google Scholar
    • Export Citation
  • [14]. M. Sajewicz J. Rzepa M. Hajnos Wojtal D. Staszek T. Kowalska M. Waksmundzka-Hajnos 2009 Acta Chromatogr. 21 453471.

  • [15]. M. Matlengiewicz N. Henzel D. Czachowska F. Schmit-Quiles D. Nicole J. C. Lauer 1994 Fuel 73 843.

  • [16]. A. Bighelli J. Casanova 2010 A. Akhila Essential Oil-Bearing Grasses CRC Press Taylor & Francis, Boca Raton 200.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 2 0 0
Jan 2021 1 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0