The present study aims at finding correlations between certain biochemical and biophysical blood parameters for diabetes patients, focusing on the antioxidant status of the red blood cells and the membrane fluidity of peripheral blood mononuclear cells (PBMC), the endothelial function and the risk of stable interaction between the leucocytes and the endothelium. For that purpose we evaluated blood samples from 32 diabetes patients compared to a control group of 10 subjects for erythrocytes’ enzymatic activity of glucose-6-phosphate dehydrogenase and of superoxide dismutase, their susceptibility to lipid peroxidation, the plasma nitric oxide stable end products level and the PBMC membrane fluidity. Our results showed that the erythrocytes’ antioxidant mechanisms and the PBMC membrane fluidity are impaired under chronic hyperglycemic conditions. Since microvascular complications of diabetes are mainly determined by redox mechanisms, the evaluation of these parameters might help in characterizing the risk of vascular complication for diabetes patients.
[1]. D. Bonnefont-Rousselot J. P. Bastard et al.2000 Consequences of the diabetic status on the oxidant/antioxidant balance Diab. Metab. 26 163–176.
[2]. M. R. Hayden S. C. Tyagi 2002 Intimal redox stress: accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus Atheroscleropathy. Cardiovasc. Diabetol. 1 1–27.
[3]. G. Bugdayci N. Altan et al.2006 The effect of the sulfonylurea glyburide on glutathione-S-transferase and glucose-6-phosphate dehydrogenase in streptozotocin-induced diabetic rat liver Acta Diabetol. 43 131–134.
[4]. C. Costagliola 1990 Oxidative state of glutathione in red blood cells and plasma of diabetic patients: in vivo and in vitro study Clin. Physiol. Biochem. 8 204–210.
[5]. X. M. Leverve B. Guigas et al.2003 Mitochondrial metabolism and type-2 diabetes: a specific target of metformin Diabetes Metab. 29 6S88–6S94.
[6]. J. Rysz R. Blaszczak et al.2007 Evaluation of selected parameters of the antioxidative system in patients with type 2 diabetes in different periods of metabolic compensation Arch. Immunol. Ther. Exp. 55 335–340.
[7]. T. Nishikawa D. Kukidome et al.2007 Impact of mitochondrial ROS production on diabetic vascular complications Diabetes Res. Clin. Pract. 77 S41–45.
[8]. E. Toth A. Racz et al.2007 Contribution of polyol pathway to arteriolar dysfunction in hyperglycemia. Role of oxidative stress, diminished NO and enhanced PGH2/TXA2 mediation Am. J. Physiol. Heart Circ. Physiol. 293 H3096–H30104.
[9]. C. M. Sena E. Nunes et al.2007 Endothelial dysfunction in type 2 diabetes: effect of antioxidants Rev. Port. Cardiol. 26 609–619.
[10]. R. A. Rabini N. Cester et al.1999 Modifications induced by LDL from type 1 diabetic patients on endothelial cells obtained from human umbilical vein Diabetes 48 2221–2228.
[11]. R. M. F. Wever T. F. Lűscher et al.1998 Atherosclerosis and the two faces of endothelial nitric oxide synthase Circulation 97 108–112.
[12]. L. D. Monti C. Barlassina et al.2003 Endothelial nitric oxide synthase polymorphisms are associated with type 2 diabetes and the insulin resistance syndrome Diabetes 52 1270–1275.
[13]. G. M. Pieper 1999 Enhanced, unaltered and impaired nitric oxide-mediated endothelium dependent relaxation in experimental diabetes mellitus: importance of disease duration Diabetologia 42 204–213.
[14]. S. Hollan 1996 Membrane fluidity of blood cells Haematologia (Budapest) 27 109–127.
[15]. Expert Committee 1997 Report of the expert committee on the diagnosis and classification of diabetes mellitus Diabet. Care 201 183–197.
[16]. B. A. Shibib L. Khan R. Rahman 1993 Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase Biochem. J. 292 267–270.
[17]. D. Gradinaru D. Margina N. Mitrea 2003 Study concerning the influence of antianginal therapy on the activity of endothelial nitric oxide synthase Farmacia 3 42–51.
[18]. D. Margina M. Vladica et al.2005 Adiponectin level and NO synthesis as atherogenic markers at overweight and obese patients Pharmacia LII 68–70 (Фармация).
[19]. S. Shrivastava A. Chattopadhyay 2007 Influence of cholesterol and ergosterol on membrane dynamics using different fluorescent reporter probes Biochem. Biophys. Res. Commun. 356 705–710.
[20]. E. Katona G. Katona et al.2004 Drug Induced Membrane Effects in Metabolically Impaired and Nonimpaired Human T (Jurkat) Lymphoblastoid Cells Romanian J. Biophys. 14 29–36.
[21]. Lakowicz, J. R.: Principles of Fluorescence Spectroscopy, 2nd edition, Springer Science and Business Media Inc., 2004, pp. 298–299.
[22]. W. J. Van Blitterswijk R. P. Van Hoeven B.W. Van der Meer 1981 Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements Biochim. Biophys. Acta 644 323–332.
[23]. D. Tsuda I. Nishio 2003 Insulin sensitivity, glucose metabolism, and membrane fluidity in hypertensive subjects Circulation 108 2653–2659.
[24]. N. F. Wiernsperger 1999 Membrane physiology as a basis for the cellular effects of metformin in insulin resistance and diabetes Diabetes Metab. 25 110–127.
[25]. M. Sivonová I. Waczulíková et al.2004 The effect of Pycnogenol on the erythrocyte membrane fluidity Gen. Physiol. Biophys. 23 39–51.
[26]. P. Carr N. A. Taub et al.1993 Human lymphocyte sodium-hydrogen exchange. The influences of lipids, membrane fluidity, and insulin Hypertension 21 344–352.
[27]. R. Beck S. Bertolino et al.1998 Vascular smooth muscle and endothelial cells modulation of arachidonic acid release and membrane fluidity by albumin Circ. Res. 83 923–931.
[28]. O. K. Baskurt A. Temiz H. J. Meiselman 1998 Effect of superoxide anions on red blood cell rheologic properties Free Radical Biol. Med. 24 102–110.
[29]. K. N. Hewitt E. A. Walker P.M. Stewart 2005 Hexose-6-phosphate dehydrogenase and redox control of 11-α-hydroxysteroid dehydrogenase type 1 activity Endocrinology 146 2539–2543.
[30]. A. Wagle S. Jivraj et al.1998 Insulin regulation of glucose-6-phosphate dehydrogenase gene expression is rapamycin-sensitive and requires phosphatidylinositol 3-kinase J. Biol. Chem. 273 14968–14974.