View More View Less
  • 1 Faculty of Pharmacy, Biochemistry Department, University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956, Bucharest, Romania
  • | 2 Faculty of Pharmacy, Toxicology Department, University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956, Bucharest, Romania
  • | 3 N. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, Ion Movila Street, Bucharest, Romania
  • | 4 Faculty of General Medicine, Biophysics Department, University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474, Bucharest, Romania
Restricted access

Abstract

The present study aims at finding correlations between certain biochemical and biophysical blood parameters for diabetes patients, focusing on the antioxidant status of the red blood cells and the membrane fluidity of peripheral blood mononuclear cells (PBMC), the endothelial function and the risk of stable interaction between the leucocytes and the endothelium. For that purpose we evaluated blood samples from 32 diabetes patients compared to a control group of 10 subjects for erythrocytes’ enzymatic activity of glucose-6-phosphate dehydrogenase and of superoxide dismutase, their susceptibility to lipid peroxidation, the plasma nitric oxide stable end products level and the PBMC membrane fluidity. Our results showed that the erythrocytes’ antioxidant mechanisms and the PBMC membrane fluidity are impaired under chronic hyperglycemic conditions. Since microvascular complications of diabetes are mainly determined by redox mechanisms, the evaluation of these parameters might help in characterizing the risk of vascular complication for diabetes patients.

  • [1]. D. Bonnefont-Rousselot J. P. Bastard et al. 2000 Consequences of the diabetic status on the oxidant/antioxidant balance Diab. Metab. 26 163176.

    • Search Google Scholar
    • Export Citation
  • [2]. M. R. Hayden S. C. Tyagi 2002 Intimal redox stress: accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus Atheroscleropathy. Cardiovasc. Diabetol. 1 127.

    • Search Google Scholar
    • Export Citation
  • [3]. G. Bugdayci N. Altan et al. 2006 The effect of the sulfonylurea glyburide on glutathione-S-transferase and glucose-6-phosphate dehydrogenase in streptozotocin-induced diabetic rat liver Acta Diabetol. 43 131134.

    • Search Google Scholar
    • Export Citation
  • [4]. C. Costagliola 1990 Oxidative state of glutathione in red blood cells and plasma of diabetic patients: in vivo and in vitro study Clin. Physiol. Biochem. 8 204210.

    • Search Google Scholar
    • Export Citation
  • [5]. X. M. Leverve B. Guigas et al. 2003 Mitochondrial metabolism and type-2 diabetes: a specific target of metformin Diabetes Metab. 29 6S886S94.

    • Search Google Scholar
    • Export Citation
  • [6]. J. Rysz R. Blaszczak et al. 2007 Evaluation of selected parameters of the antioxidative system in patients with type 2 diabetes in different periods of metabolic compensation Arch. Immunol. Ther. Exp. 55 335340.

    • Search Google Scholar
    • Export Citation
  • [7]. T. Nishikawa D. Kukidome et al. 2007 Impact of mitochondrial ROS production on diabetic vascular complications Diabetes Res. Clin. Pract. 77 S4145.

    • Search Google Scholar
    • Export Citation
  • [8]. E. Toth A. Racz et al. 2007 Contribution of polyol pathway to arteriolar dysfunction in hyperglycemia. Role of oxidative stress, diminished NO and enhanced PGH2/TXA2 mediation Am. J. Physiol. Heart Circ. Physiol. 293 H3096H30104.

    • Search Google Scholar
    • Export Citation
  • [9]. C. M. Sena E. Nunes et al. 2007 Endothelial dysfunction in type 2 diabetes: effect of antioxidants Rev. Port. Cardiol. 26 609619.

  • [10]. R. A. Rabini N. Cester et al. 1999 Modifications induced by LDL from type 1 diabetic patients on endothelial cells obtained from human umbilical vein Diabetes 48 22212228.

    • Search Google Scholar
    • Export Citation
  • [11]. R. M. F. Wever T. F. Lűscher et al. 1998 Atherosclerosis and the two faces of endothelial nitric oxide synthase Circulation 97 108112.

    • Search Google Scholar
    • Export Citation
  • [12]. L. D. Monti C. Barlassina et al. 2003 Endothelial nitric oxide synthase polymorphisms are associated with type 2 diabetes and the insulin resistance syndrome Diabetes 52 12701275.

    • Search Google Scholar
    • Export Citation
  • [13]. G. M. Pieper 1999 Enhanced, unaltered and impaired nitric oxide-mediated endothelium dependent relaxation in experimental diabetes mellitus: importance of disease duration Diabetologia 42 204213.

    • Search Google Scholar
    • Export Citation
  • [14]. S. Hollan 1996 Membrane fluidity of blood cells Haematologia (Budapest) 27 109127.

  • [15]. Expert Committee 1997 Report of the expert committee on the diagnosis and classification of diabetes mellitus Diabet. Care 201 183197.

    • Search Google Scholar
    • Export Citation
  • [16]. B. A. Shibib L. Khan R. Rahman 1993 Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase Biochem. J. 292 267270.

    • Search Google Scholar
    • Export Citation
  • [17]. D. Gradinaru D. Margina N. Mitrea 2003 Study concerning the influence of antianginal therapy on the activity of endothelial nitric oxide synthase Farmacia 3 4251.

    • Search Google Scholar
    • Export Citation
  • [18]. D. Margina M. Vladica et al. 2005 Adiponectin level and NO synthesis as atherogenic markers at overweight and obese patients Pharmacia LII 6870 (Фармация).

    • Search Google Scholar
    • Export Citation
  • [19]. S. Shrivastava A. Chattopadhyay 2007 Influence of cholesterol and ergosterol on membrane dynamics using different fluorescent reporter probes Biochem. Biophys. Res. Commun. 356 705710.

    • Search Google Scholar
    • Export Citation
  • [20]. E. Katona G. Katona et al. 2004 Drug Induced Membrane Effects in Metabolically Impaired and Nonimpaired Human T (Jurkat) Lymphoblastoid Cells Romanian J. Biophys. 14 2936.

    • Search Google Scholar
    • Export Citation
  • [21]. Lakowicz, J. R.: Principles of Fluorescence Spectroscopy, 2nd edition, Springer Science and Business Media Inc., 2004, pp. 298299.

    • Search Google Scholar
    • Export Citation
  • [22]. W. J. Van Blitterswijk R. P. Van Hoeven B.W. Van der Meer 1981 Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements Biochim. Biophys. Acta 644 323332.

    • Search Google Scholar
    • Export Citation
  • [23]. D. Tsuda I. Nishio 2003 Insulin sensitivity, glucose metabolism, and membrane fluidity in hypertensive subjects Circulation 108 26532659.

    • Search Google Scholar
    • Export Citation
  • [24]. N. F. Wiernsperger 1999 Membrane physiology as a basis for the cellular effects of metformin in insulin resistance and diabetes Diabetes Metab. 25 110127.

    • Search Google Scholar
    • Export Citation
  • [25]. M. Sivonová I. Waczulíková et al. 2004 The effect of Pycnogenol on the erythrocyte membrane fluidity Gen. Physiol. Biophys. 23 3951.

    • Search Google Scholar
    • Export Citation
  • [26]. P. Carr N. A. Taub et al. 1993 Human lymphocyte sodium-hydrogen exchange. The influences of lipids, membrane fluidity, and insulin Hypertension 21 344352.

    • Search Google Scholar
    • Export Citation
  • [27]. R. Beck S. Bertolino et al. 1998 Vascular smooth muscle and endothelial cells modulation of arachidonic acid release and membrane fluidity by albumin Circ. Res. 83 923931.

    • Search Google Scholar
    • Export Citation
  • [28]. O. K. Baskurt A. Temiz H. J. Meiselman 1998 Effect of superoxide anions on red blood cell rheologic properties Free Radical Biol. Med. 24 102110.

    • Search Google Scholar
    • Export Citation
  • [29]. K. N. Hewitt E. A. Walker P.M. Stewart 2005 Hexose-6-phosphate dehydrogenase and redox control of 11-α-hydroxysteroid dehydrogenase type 1 activity Endocrinology 146 25392543.

    • Search Google Scholar
    • Export Citation
  • [30]. A. Wagle S. Jivraj et al. 1998 Insulin regulation of glucose-6-phosphate dehydrogenase gene expression is rapamycin-sensitive and requires phosphatidylinositol 3-kinase J. Biol. Chem. 273 1496814974.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4 4 1
Full Text Views 4 1 0
PDF Downloads 1 0 0