Tissue regeneration is a complex biological process of vital importance since it allows renewal of damaged cells and organs. The healing of long bones and large joints is often extended or incomplete primarily in elderly people or in polytraumatized patients. Various attempts are made to solve this severe medical and social problem by developing novel bioactive materials, among which bioactive glass is the most attractive because of its osteoconductive and osteostimulative properties. Lipid peroxidation is defined as an important parameter of systematic stress response in patients with traumatic brain injuries and bone fractures. The major bioactive marker and final product of lipid peroxidation, 4-hydroxynonenal (HNE), is a particularly interesting biomolecule because it regulates differentiation, proliferation and apoptosis of cells and might therefore play an important role in regulating the regeneration of damaged tissue such as bone. Therefore, in this study, we investigated the concept of using bioactive glass functionalized with HNE as an in vitro model of bone regeneration.
[1]. J. C. Damien J. R. Parson 1991 Bone graft and bone graft substitutes: a review of current technology and applications J. Appl. Biomater. 2 187–208.
[2]. T. Kitsugi T. Yamamuro T. Nakamura et al.1993 Four calcium phosphate ceramics as bone substitute for nonweight-bearing Biomaterials 14 216–224.
[3]. G. Daculsi R. Z. Leberos E. Nery et al.1989 Transformation of biphasic calcium phosphate ceramics in vivo, ultrastructural and physico-chemical characterization J. Biomed. Mater. Res. 23 883–894.
[4]. L. L. Hench 1991 Bioceramics: from concept to clinic J. Am. Ceram. Soc. 74 1487–1510.
[5]. L. L. Hench R. J. Splinter W. C. Allen et al.1971 Bonding mechanism at the interface of ceramic prosthetic materials. Part 1 J. Biomed. Mater. Res. Symp. 2 117–141.
[6]. L. L. Hench J. K. West 1996 Biological applications of bioactive glasses Life Chem. Rep. 13 187–241.
[7]. T. Kokubo S. Ito T. Huang et al.1990 Ca, P-rich layer formed on high strength bioactive glass ceramic A-W J. Biomed. Mater. Res. 24 331–343.
[8]. T. Kitsugi T. Nakamura T. Yamamura et al.1987 SEM EPMA observation of three types of apatite containing glass ceramics implanted in bone: the variance of a Ca-P rich layer J. Biomed. Mater. Res. 21 1255–1271.
[9]. H. Oghushi Y. Dohi T. Yoshikawa et al.1996 Osteogenic differentiation of cultured marrow stem cells on the surface of bioactive glass ceramic J. Biomed. Mater. Res. 32 341–348.
[10]. I. Kinnunen K. Aitasalo M. Pollonen et al.2000 Reconstruction of orbital floor fractures using bioactive glass J. Craniomaxillofac. Surg. 28 229–234.
[11]. J. S. Park J. J. Suh S. H. Choi et al.2001 Effects of pretreatment clinical parameters on bioactive glass implantation in intrabony periodontal defects J. Periodontol. 72 730–740.
[12]. P. Ducheyne 1987 Bioceramics: material characteristics versus in vivo behavior J. Biomed. Mater. Res. 21 219–236.
[13]. H. Oonishi S. Kushitani E. Yasukawa et al.1997 Particulate bioglass compared with hydroxyapatite as a bone graft substitute Clin. Orthop. 334 316–325.
[14]. J. E. Davies N. Baldan 1997 Scanning electron microscopy of the bone-bioactive implant interface J. Biomed. Mater. Res. 36 429–440.
[15]. A. M. Gatti G. Valdre O. H. Andersson 1994 Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue Biomaterials 15 208–212.
[16]. S. Hattar A. Berdal A. Asselin et al.2002 Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses Eur. Cells Mater. 4 61–69.
[17]. L. L. Hench 2006 The story of bioglass J. Mater. Sci.: Mater. Med. 17 967–978.
[18]. M. Vogel C. Voigt U. Gross et al.2001 In vivo comparison of bioactive glass particles in rabbits Biomaterials 22 357–362.
[19]. R. Wildburger N. Zarkovic G. Egger et al.1994 Basic fibroblast growth factor (bFGF) immunoreactivity as a possible link between head injury and impaired bone fracture healing Bone Miner. 27 183–192.
[20]. R. Wildburger N. Zarkovic G. Egger et al.1995 Comparison of the values of basic fibroblast growth factor determined by an immunoassay in the sera of patients with traumatic brain injury and enhanced osteogenesis and the effects of the same sera on the fibroblast growth in vitro Eur. J. Clin. Chem. Clin. Biochem. 33 693–698.
[21]. R. Wildburger N. Zarkovic G. Leb et al.2001 Post-traumatic changes of insulin like growth factor type 1 and growth hormone in patients with bone fractures and traumatic brain injury Wien. Klin. Wochenschr. 113 119–126.
[22]. R. Wildburger N. Zarkovic F. Tatzber et al.1997 Post-traumatic dynamic changes of the titer of auto antibodies oxidized low-density lipoproteins; unspecific or organ-specific consequences of injury Biofactors 6 292–293.
[23]. R. Wildburger S. Borovic N. Zarkovic et al.2000 Post-traumatic dynamic changes of the antibody titer against oxidized low-density lipoproteins Wien. Klin. Wochenschr. 112 798–803.
[24]. S. Borovic Sunjic A. Cipak F. Rabuzin et al.2005 The influence of 4-hydroxy-2-nonenal on proliferation, differentiation and apoptosis of human osteosarcoma cells Biofactors 24 141–148.
[25]. S. Borovic A. Cipak A. Meinitzer et al.2007 Differential sensitivity to 4-hydroxynonenal for normal and malignant mesenchymal cells Redox Rep. 12 50–54.
[26]. N. Zarkovic Z. Ilic M. Jurin et al.1993 Stimulation of HeLa cell growth by physiological concentrations of 4-hydroxynonenal Cell Biochem. Funct. 11 279–286.
[27]. N. Zarkovic R. J. Schaur H. Puhl et al.1994 Mutual dependence of growth modifying effects of 4-hydroxynonenal and fetal calf serum in vitro Free Radic. Biol. Med. 16 877–884.
[28]. T. H. Kreuzer R. Grube N. Zarkovic et al.1998 4-Hydroxynonenal modifies the effects of serum growth factors on the expression of c-fos proto-oncogene and the proliferation of HeLa carcinoma cells Free Radic. Biol. Med. 25 42–49.
[29]. N. Zarkovic K. Zarkovic R. J. Schaur et al.1999 4-Hydroxynonenal as a second messenger of free radicals and growth modifying factor Life Sci. 65 1901–1904.
[30]. F. Biasi B. Vizio C. Mascia et al.2006 JNK up-regulation as a key event in the pro-apoptotic interaction between TGF-β1 and 4-hydroxynonenal in colon mucosa Free Radic. Biol. Med. 40 443–454.
[31]. N. Zarkovic 2003 4-Hydroxynonenal as a bioactive marker of pathopysiological processes Mol. Aspects Med. 24 281–291.
[32]. M. P. Mattson R. C. Haddon A. M. Rao 2000 Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth J. Mol. Neurosci. 14 175–182.
[33]. T. Matsuda J. E. Davies 1987 The in vitro response of osteoblasts to bioactive glass Biomaterials 8 275–284.
[34]. W. C. A. Vrouwenvelder C. G. Groot K. de Groot 1992 Behaviour of fetal rat osteoblasts cultured in vitro on bioactive glass and nonreactive glasses Biomaterials 13 382–392.
[35]. N. Price S. P. Bendall C. Frondosa et al.1997 Human osteoblast-like cells (MG63) proliferate on a bioactive glass surface J. Biomed. Mater. Res. 37 394–400.
[36]. J. E. Gough J. R. Jones L. L. Hench 2004 Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold Biomaterials 25 2039–2046.
[37]. L. Malaval D. Modrowski A. K. Gupta et al.1994 Cellular expression of bone-related proteins during the in vitro osteogenesis in rat bone marrow stromal cell cultures J. Cell Physiol. 158 555–572.
[38]. J. N. Beresford S. E. Graves C. A. Smoothy 1993 Formation of mineralised nodules by bone-derived cells in vitro: a model of bone formation? Am. J. Med. Genet. 45 163–178.