Authors:
Peethambaran Arun Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, USA

Search for other papers by Peethambaran Arun in
Current site
Google Scholar
PubMed
Close
,
Manojkumar Valiyaveettil Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, USA

Search for other papers by Manojkumar Valiyaveettil in
Current site
Google Scholar
PubMed
Close
,
Lionel Biggemann Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, USA

Search for other papers by Lionel Biggemann in
Current site
Google Scholar
PubMed
Close
,
Yonas Alamneh Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, USA

Search for other papers by Yonas Alamneh in
Current site
Google Scholar
PubMed
Close
,
Yanling Wei Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, USA

Search for other papers by Yanling Wei in
Current site
Google Scholar
PubMed
Close
,
Samuel Oguntayo Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, USA

Search for other papers by Samuel Oguntayo in
Current site
Google Scholar
PubMed
Close
,
Ying Wang Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, USA

Search for other papers by Ying Wang in
Current site
Google Scholar
PubMed
Close
,
Joseph B. Long Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, USA

Search for other papers by Joseph B. Long in
Current site
Google Scholar
PubMed
Close
, and
Madhusoodana P. Nambiar Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, USA

Search for other papers by Madhusoodana P. Nambiar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Emerging studies show that blast exposure causes traumatic brain injury (TBI) and auditory dysfunction without rupture of tympanic membrane, suggesting central auditory processing impairment after blast exposure. There is limited information on the mechanisms of blast-induced TBI and associated peripheral and central auditory processing impairments. We utilized a repetitive blast exposure mouse model to unravel the mechanisms of blast TBI and auditory impairment. C57BL/6J mice were exposed to three repeated blasts (20.6 psi) using a shock tube, and the cerebellum was subjected to proteomic analysis. The data showed that calretinin and parvalbumin, two major calcium buffering proteins, were significantly up-regulated after repeated blast exposures, and this was confirmed by Western blotting. Since these proteins are reportedly involved in auditory dysfunction, we examined the inner ear and found both calretinin and parvalbumin were up-regulated, suggesting that modulation of these proteins plays a role in blast-induced peripheral and central auditory processing impairments. Expression of cleaved caspase-3 was also up-regulated in both regions indicating ongoing cellular apoptosis, possibly due to altered calcium homeostasis. These results provide a molecular basis for changes in central and peripheral auditory processing involving abnormal calcium homeostasis resulting in hearing impairment after blast exposure.

  • 1. S.A. Fausti D.J. Wilmington F.J. Gallun P.J. Myers J.A. Henry 2009 Auditory and vestibular dysfunction associated with blast-related traumatic brain injury J Rehabil Res Dev 46 797 810.

    • Search Google Scholar
    • Export Citation
  • 2. H.L. Lew J.F. Jerger S.B. Guillory J.A. Henry 2007 Auditory dysfunction in traumatic brain injury J Rehabil Res Dev 44 921 928.

  • 3. G.M. Haase K.N. Prasad W.C. Cole J.M. Baggett-Strehlau S.E. Wyatt 2011 Antioxidant micronutrient impact on hearing disorders: concept, rationale, and evidence Am J Otolaryngol 32 55 61.

    • Search Google Scholar
    • Export Citation
  • 4. G.V. Bochicchio K. Lumpkins J. O'Connor M. Simard S. Schaub A. Conway K. Bochicchio T.M. Scalea 2008 Blast injury in a civilian trauma setting is associated with a delay in diagnosis of traumatic brain injury Am Surg 74 267 270.

    • Search Google Scholar
    • Export Citation
  • 5. S.A. Fausti D.J. Wilmington P.V. Helt W.J. Helt D. Konrad-Martin 2005 Hearing health and care: the need for improved hearing loss prevention and hearing conservation practices J Rehabil Res Dev 42 45 62.

    • Search Google Scholar
    • Export Citation
  • 6. J.C. Mao E. Pace P. Pierozynski Z. Kou Y. Shen P. Vandevord E.M. Haacke X. Zhang J. Zhang 2011 Blast-induced tinnitus and hearing loss in rats: behavioral and imaging assays J Neurotrauma 29 430 434.

    • Search Google Scholar
    • Export Citation
  • 7. Y. Wang Y. Wei S. Oguntayo W. Wilkins P. Arun M. Valiyaveettil J. Song J. Long M.P. Nambiar 2011 Tightly coupled repetitive blast-induced traumatic brain injury: development and characterization in mice J Neurotrauma 28 2171 2183.

    • Search Google Scholar
    • Export Citation
  • 8. M.E. Ylikoski J.S. Ylikoski 1994 Hearing loss and handicap of professional soldiers exposed to gunfire noise Scand J Work Environ Health 20 93 100.

    • Search Google Scholar
    • Export Citation
  • 9. J.B. Long T.L. Bentley K.A. Wessner C. Cerone S. Sweeney R.A. Bauman 2009 Blast overpressure in rats: recreating a battlefield injury in the laboratory J Neurotrauma 26 827 840.

    • Search Google Scholar
    • Export Citation
  • 10. T. Boyiri R.I. Somiari S. Russell C. Aliaga K. El-Bayoumy 2009 Proteomics of rat prostate lobes treated with 2-N-hydroxylamino-n1-methyl-6-phenylimidazo[4,5-b]pyridine, 5alpha-dihydrotestosterone, individually and in combination Int J Oncol 35 559 567.

    • Search Google Scholar
    • Export Citation
  • 11. C. Lohmann E. Friauf 1996 Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats J Comp Neurol 367 90 109.

    • Search Google Scholar
    • Export Citation
  • 12. A. Caicedo C. d'Aldin J.L. Puel M. Eybalin 1996 Distribution of calcium-binding protein immunoreactivities in the guinea pig auditory brainstem Anat Embryol (Berl) 194 465 487.

    • Search Google Scholar
    • Export Citation
  • 13. C.M. Hackney S. Mahendrasingam A. Penn R. Fettiplace 2005 The concentrations of calcium buffering proteins in mammalian cochlear hair cells J Neurosci 25 7867 7875.

    • Search Google Scholar
    • Export Citation
  • 14. A. Caicedo C. d'Aldin M. Eybalin J.L. Puel 1997 Temporary sensory deprivation changes calcium-binding proteins levels in the auditory brainstem J Comp Neurol 378 1 15.

    • Search Google Scholar
    • Export Citation
  • 15. R.D. Frisina M.L. Zettel P.E. Kelley J.P. Walton 1995 Distribution of calbindin D-28k immunoreactivity in the cochlear nucleus of the young adult chinchilla Hear Res 85 53 68.

    • Search Google Scholar
    • Export Citation
  • 16. E. Idrizbegovic N. Bogdanovic B. Canlon 1998 Modulating calbindin and parvalbumin immunoreactivity in the cochlear nucleus by moderate noise exposure in mice. A quantitative study on the dorsal and posteroventral cochlear nucleus Brain Res 800 86 96.

    • Search Google Scholar
    • Export Citation
  • 17. J.C. Alvarado V. Fuentes-Santamaria C.K. Henkel 2009 Rapid modifications in calretinin immunostaining in the deep layers of the superior colliculus after unilateral cochlear ablation Hear Res 247 78 86.

    • Search Google Scholar
    • Export Citation
  • 18. P.M. Sens C.I. de Almeida 2007 Participation of the cerebellum in auditory processing Braz J Otorhinolaryngol 73 266 270.

  • 19. R.S. Snider A. Stowell 1946 A comparison of the tactile areas in the cerebellum of the cat and monkey (Macaca mulatta) Anat Rec 94 498.

    • Search Google Scholar
    • Export Citation
  • 20. J.A. Altman N.N. Bechterev E.A. Radionova G.N. Shmigidina J. Syka 1976 Electrical responses of the auditory area of the cerebellar cortex to acoustic stimulation Exp Brain Res 26 285 298.

    • Search Google Scholar
    • Export Citation
  • 21. C.M. Huang G. Liu R. Huang 1982 Projections from the cochlear nucleus to the cerebellum Brain Res 244 1 8.

  • 22. S. Teramoto R.S. Snider 1966 Modification of auditory responses by cerebellar stimulation Exp Neurol 16 191 200.

  • 23. J.W. Wolfe C.M. Kos 1975 Cerebellar inhibition of auditory function Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol 80 314 318.

    • Search Google Scholar
    • Export Citation
  • 24. R.H. Garman L.W. Jenkins R.C. Switzer III R.A. Bauman L.C. Tong P.V. Swauger S.A. Parks D.V. Ritzel C.E. Dixon R.S. Clark H. Bayir V. Kagan E.K. Jackson P.M. Kochanek 2011 Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury J Neurotrauma 28 947 959.

    • Search Google Scholar
    • Export Citation
  • 25. V.E. Koliatsos I. Cernak L. Xu Y. Song A. Savonenko B.J. Crain C.G. Eberhart C.E. Frangakis T. Melnikova H. Kim D. Lee 2011 A mouse model of blast injury to brain: initial pathological, neuropathological, and behavioral characterization J Neuropathol Exp Neurol 70 399 416.

    • Search Google Scholar
    • Export Citation
  • 26. C.L. Mac Donald A.M. Johnson D. Cooper E.C. Nelson N.J. Werner J.S. Shimony A.Z. Snyder M.E. Raichle J.R. Witherow R. Fang S.F. Flaherty D.L. Brody 2011 Detection of blast-related traumatic brain injury in U.S. military personnel N Engl J Med 364 2091 2100.

    • Search Google Scholar
    • Export Citation
  • 27. J. Lu K.C. Ng G.S. Ling J. Wu J.F. Poon E.M. Kan M.H. Tan Y.J. Wu P. Li S. Moochhala E. Yap L.K. Lee A.L. Teo I.B. Yeh D.M. Sergio F. Chua S.D. Kumar E.A. Ling 2011 Effect of blast exposure on the brain structure and cognition in the Macaca fascicularis J Neurotrauma 28 1 22.

    • Search Google Scholar
    • Export Citation
  • 28. E.R. Peskind E.C. Petrie D.J. Cross K. Pagulayan K. McCraw D. Hoff K. Hart C.E. Yu M.A. Raskind D.G. Cook S. Minoshima 2011 Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war veterans with persistent post-concussive symptoms Neuroimage 54 Suppl1 S76 S82.

    • Search Google Scholar
    • Export Citation
  • 29. E. Idrizbegovic N. Bogdanovic B. Canlon 1999 Sound stimulation increases calcium-binding protein immunoreactivity in the inferior colliculus in mice Neurosci Lett 259 49 52.

    • Search Google Scholar
    • Export Citation
  • 30. V. Fuentes-Santamaria J.C. Alvarado J.K. Brunso-Bechtold C.K. Henkel 2003 Upregulation of calretinin immunostaining in the ferret inferior colliculus after cochlear ablation J Comp Neurol 460 585 596.

    • Search Google Scholar
    • Export Citation
  • 31. E. Idrizbegovic N. Bogdanovic J. C. B. Willott 2004 Age-related increases in calcium-binding protein immunoreactivity in the cochlear nucleus of hearing impaired C57BL/6J mice Neurobiol Aging 25 1085 1093.

    • Search Google Scholar
    • Export Citation
  • 32. D. Maskey J. Pradhan C.K. Oh M.J. Kim 2012 Changes in the distribution of calbindin D28-k, parvalbumin, and calretinin in the hippocampus of the circling mouse Brain Res 1437 58 68.

    • Search Google Scholar
    • Export Citation
  • 33. A.S. Basile J.M. Huang C. Xie D. Webster C. Berlin P. Skolnick 1996 N-methyl-D-aspartate antagonists limit aminoglycoside antibiotic-induced hearing loss Nat Med 2 1338 1343.

    • Search Google Scholar
    • Export Citation
  • 34. J.L. Puel J. Ruel D.C. Gervais R. Pujol 1998 Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss Neuroreport 9 2109 2114.

    • Search Google Scholar
    • Export Citation
  • 35. J.L. Puel 1995 Chemical synaptic transmission in the cochlea Prog Neurobiol 47 449 476.

  • 36. I. Uemaetomari K. Tabuchi M. Nakamagoe S. Tanaka H. Murashita A. Hara 2009 L-type voltage-gated calcium channel is involved in the pathogenesis of acoustic injury in the cochlea Tohoku J Exp Med 218 41 47.

    • Search Google Scholar
    • Export Citation
  • 37. G.D. Chen J. Kong K. Reinhard L.D. Fechter 2001 NMDA receptor blockage protects against permanent noise-induced hearing loss but not its potentiation by carbon monoxide Hear Res 154 108 115.

    • Search Google Scholar
    • Export Citation
  • 38. M. Diao Y. Zhang H. Liu H. Han W. Gao 2005 [Observation on the protective effect of MK-801 against hearing loss in acoustic trauma] Lin Chuang Er Bi Yan Hou Ke Za Zhi 19 27 30.

    • Search Google Scholar
    • Export Citation
  • 39. H. Shen B. Zhang J.H. Shin D. Lei Y. Du X. Gao Q. Wang K.K. Ohlemiller J. Piccirillo J. Bao 2007 Prophylactic and therapeutic functions of T-type calcium blockers against noise-induced hearing loss Hear Res 226 52 60.

    • Search Google Scholar
    • Export Citation
  • 40. C.W. Heizmann 1992 Calcium-binding proteins: basic concepts and clinical implications Gen Physiol Biophys 11 411 425.

  • 41. A.G. Coppens A. Resibois L. Poncelet 2000 Immunolocalization of calbindin D28k and calretinin in the dog cochlea during postnatal development Hear Res 145 101 110.

    • Search Google Scholar
    • Export Citation
  • 42. P.J. Vandevord R. Bolander V.S. Sajja K. Hay C.A. Bir 2012 Mild neurotrauma indicates a range-specific pressure response to low level shock wave exposure Ann Biomed Eng 40 227 236.

    • Search Google Scholar
    • Export Citation
  • 43. A.A. Eshraghi T.R. Van de Water 2006 Cochlear implantation trauma and noise-induced hearing loss: apoptosis and therapeutic strategies Anat Rec A Discov Mol Cell Evol Biol 288 473 481.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

2019  
Scimago
H-index
11
Scimago
Journal Rank
0,220
Scimago
Quartile Score
Medicine (miscellaneous) Q3
Scopus
Cite Score
155/133=1,2
Scopus
Cite Score Rank
General Medicine 199/529 (Q2)
Scopus
SNIP
0,343
Scopus
Cites
206
Scopus
Documents
23

 

Interventional Medicine and Applied Science
Language English
Size  
Year of
Foundation
2009
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2061-1617 (Print)
ISSN 2061-5094 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 32 0 0
Aug 2024 19 0 0
Sep 2024 26 0 0
Oct 2024 73 0 0
Nov 2024 15 0 0
Dec 2024 22 0 0
Jan 2025 4 0 0