View More View Less
  • 1 Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg “Otto von Guericke”, Magdeburg, Germany
  • | 2 Institute for Neuroradiology, University of Magdeburg “Otto von Guericke”, Magdeburg, Germany
  • | 3 Milton Park Office, ANSYS Inc. UK, Abingdon, Oxon, UK
  • | 4 Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg “Otto von Guericke”, Universitatsplatz 2, D-39106, Magdeburg, Germany
Restricted access

Abstract

The treatment of cerebral aneurysms, found in roughly 5% of the population and associated in case of rupture to a high mortality rate, is a major challenge for neurosurgery and neuroradiology due to the complexity of the intervention and to the resulting, high hazard ratio. Improvements are possible but require a better understanding of the associated, unsteady blood flow patterns in complex 3D geometries. It would be very useful to carry out such studies using suitable numerical models, if it is proven that they reproduce accurately enough the real conditions. This validation step is classically based on comparisons with measured data. Since in vivo measurements are extremely difficult and therefore of limited accuracy, complementary model-based investigations considering realistic configurations are essential. In the present study, simulations based on computational fluid dynamics (CFD) have been compared with in situ, laser-Doppler velocimetry (LDV) measurements in the phantom model of a cerebral aneurysm. The employed 1:1 model is made from transparent silicone. A liquid mixture composed of water, glycerin, xanthan gum and sodium chloride has been specifically adapted for the present investigation. It shows physical flow properties similar to real blood and leads to a refraction index perfectly matched to that of the silicone model, allowing accurate optical measurements of the flow velocity. For both experiments and simulations, complex pulsatile flow waveforms and flow rates were accounted for. This finally allows a direct, quantitative comparison between measurements and simulations. In this manner, the accuracy of the employed computational model can be checked.

  • 1. M. Kaminogo M. Yonekura S. Shibata 2003 Incidence and outcome of multiple intracranial aneurysms in a defined population Stroke 34 1 16 21.

    • Search Google Scholar
    • Export Citation
  • 2. S. Yu J. Zhao 1999 A steady flow analysis on the stented and non-stented sidewall aneurysm models Med Eng Phys 21 3 133 141.

  • 3. H. Isoda Y. Ohkura T. Kosugi M. Hirano H. Takeda H. Hiramatsu S. Yamashita Y. Takehara M.T. Alley R. Bammer 2010 In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI Neuroradiology 52 10 921 928.

    • Search Google Scholar
    • Export Citation
  • 4. I. Chatziprodromou V.D. Butty V.B. Makhijani D. Poulikakos Y. Ventikos 2003 Pulsatile blood flow in anatomically accurate vessels with multiple aneurysms: a medical intervention planning application of computational haemodynamics Flow Turbul Combust 71 1 333 346.

    • Search Google Scholar
    • Export Citation
  • 5. Cebral JR , Lohner R: From medical images to CFD meshes. In 8th International Meshing Roundtable. 1999. South Lake Tahoe, CA, USA, pp. 321331.

    • Search Google Scholar
    • Export Citation
  • 6. J.R. Cebral M.A. Castro J.E. Burgess R.S. Pergolizzi M.J. Sheridan C.M. Putman 2005 Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models Am J Neuroradiol 26 10 2550 2559.

    • Search Google Scholar
    • Export Citation
  • 7. L. Parlea R. Fahrig D.W. Holdsworth S.P. Lownie 1999 An analysis of the geometry of saccular intracranial aneurysms Am J Neuroradiol 20 6 1079 1089.

    • Search Google Scholar
    • Export Citation
  • 8. V. Butty K. Gudjonsson P. Buchel V. Makhijani Y. Ventikos D. Poulikakos 2001 Flow through a realistic arterial geometry with two aneurysms: mixing characteristics and residence times ASME Fluid Eng Div 256 53 58.

    • Search Google Scholar
    • Export Citation
  • 9. V. Butty K. Gudjonsson P. Buchel V. Makhijani Y. Ventikos D. Poulikakos 2002 Residence times and basins of attraction for a realistic right internal carotid artery with two aneurysms Biorheology 39 4 387 394.

    • Search Google Scholar
    • Export Citation
  • 10. J.R. Cebral M.A. Castro D. Millan A.F. Frangi C. Putman 2005 Pilot clinical study of aneurysm rupture using image-based computational fluid dynamics models Proceedings SPIE: the International Society for Optical Engineering. Medical Imaging 2005: Physiology, function and structure from medical images 5746 245 256.

    • Search Google Scholar
    • Export Citation
  • 11. D. Liepsch H. Steiger A. Poll H. Reulen 1987 Hemodynamic stress in lateral saccular aneurysms Biorheology 24 6 689.

  • 12. B.B. Lieber M. Aenis Y. Zhao A.K. Wakhloo 1995 Flow characteristics in a stented and nonstented sidewall aneurysm model American Society of Mechanical Engineers, Bioengineering Division (Publication) BED 31 379 380.

    • Search Google Scholar
    • Export Citation
  • 13. H. Ujiie D.W. Liepsch M. Goetz R. Yamaguchi H. Yonetani K. Takakura R.L. Macdonald 1996 Hemodynamic study of the anterior communicating artery Stroke 27 11 2086 2094.

    • Search Google Scholar
    • Export Citation
  • 14. T.M. Liou W.C. Chang C.C. Liao 1997 Experimental study of steady and pulsatile flows in cerebral aneurysm model of various sizes at branching site J Biomech Eng 119 3 325 332.

    • Search Google Scholar
    • Export Citation
  • 15. K. Barath F. Cassot D.A. Rufenacht J.H.D. Fasel 2004 Anatomically shaped internal carotid artery aneurysm in vitro model for flow analysis to evaluate stent effect Am J Neuroradiol 25 10 1750 1759.

    • Search Google Scholar
    • Export Citation
  • 16. Hoi Y , Ionita CN, Tranquebar RV, Hoffmann KR: Flow modification in canine intracranial aneurysm model by an asymmetric stent: studies using digital subtraction angiography (DSA) and image-based computational fluid dynamics (CFD) analyses. In Progress in Biomedical Optics and Imaging — Proceedings of SPIE. 2006: NIH Public Access. p. 61430J.

    • Search Google Scholar
    • Export Citation
  • 17. S. Tateshima K. Tanishita H. Omura J. Villablanca F. Vinuela 2007 Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: in vitro study using longitudinal CT angiogram database Am J Neuroradiol 28 4 622 627.

    • Search Google Scholar
    • Export Citation
  • 18. M.D. Ford H.N. Nikolov J.S. Milner S.P. Lownie E.M. DeMont W. Kalata F. Loth D.W. Holdsworth D.A. Steinman 2008 PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models J Biomech Eng 130 2 15 21.

    • Search Google Scholar
    • Export Citation
  • 19. D.I. Hollnagel P.E. Summers S.S. Kollias D. Poulikakos 2007 Laser Doppler velocimetry (LDV) and 3D phase-contrast magnetic resonance angiography (PC-MRA) velocity measurements: validation in an anatomically accurate cerebral artery aneurysm model with steady flow J Magn Res Imaging 26 6 1493 1505.

    • Search Google Scholar
    • Export Citation
  • 20. F. Dorn F. Niedermeyer A. Balasso D. Liepsch T. Liebig 2011 The effect of stents on intra-aneurysmal hemodynamics: in vitro evaluation of a pulsatile sidewall aneurysm using laser Doppler anemometry Neuroradiology 53 4 267 272.

    • Search Google Scholar
    • Export Citation
  • 21. A. Ugron M.I. Farinas L. Kiss G. Paal 2012 Unsteady velocity measurements in a realistic intracranial aneurysm model Experiments in Fluids 52 1 37 52.

    • Search Google Scholar
    • Export Citation
  • 22. Janiga G , Beuing O, Seshadhri S, Neugebauer M, Gasteiger R, Preim B, Rose G, Skalej M, Thevenin D: Virtual stenting using real patient data. In Conference on Modelling Fluid Flow. 2009. Budapest, Hungary, pp. 111117.

    • Search Google Scholar
    • Export Citation
  • 23. Seshadhri S , Janiga G, Beuing O, Skalej M, Thevenin D: Impact of stents and flow diverters on hemodynamics in idealized aneurysm models. J Biomech Eng 133 (7), 071005/19 (2011).

    • Search Google Scholar
    • Export Citation
  • 24. S. Seshadhri G. Janiga B. Preim G. Rose M. Skalej D. Thevenin 2009 Numerical simulation and Experimental Validation in an Exact Aortic Arch Aneurysm Model. In 4th European Conference of the International Federation for Medical and Biological Engineering Springer Antwerp, Belgium 1975 1979.

    • Search Google Scholar
    • Export Citation
  • 25. C. Tropea L. Yarin J.F. Foss 2007 Handbook of Experimental Fluid Mechanics Springer Berlin.

  • 26. B. Katzbauer 1998 Properties and applications of xanthan gum Polym Degrad Stab 59 1 81 84.

  • 27. W. Nichols M. O'Rourke 1998 McDonald's Blood Flow in Arteries: Theoretical, Experimental, and Clinical Principles SAGE Publication London.

    • Search Google Scholar
    • Export Citation
  • 28. ANSYS Inc (2009): ANSYS Fluent 12.0 User's Guide. Canonsburg, PA.

  • 29. Bade R , Schumann C, Seshadhri S, Janiga G, Bolke T, Gurvit O, Skalej M, Rose G, Thevenin D, Preim B: Effiziente Generierung von Oberflachenmodellen fur die Simulation des zerebralen Blutflusses. in 6. Jahrestagung der Deutschen Gesellschaft fur Computergestutzte Chirurgie (CURAC). 2007. Karlsruhe, Germany, pp. 125128.

    • Search Google Scholar
    • Export Citation
  • 30. J.R. Cebral M.A. Castro S. Appanaboyina C.M. Putman D. Millan A.F. Frangi 2005 Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity IEEE Trans Med Imaging 24 4 457 467.

    • Search Google Scholar
    • Export Citation
  • 31. T. Moench R. Gasteiger G. Janiga H. Theisel B. Preim 2011 Contextaware mesh smoothing for biomedical applications Comput Graph 35 4 755 767.

    • Search Google Scholar
    • Export Citation
  • 32. Casey M , Wintergerste T (2000): Quality and Trust in Industrial CFD: Best Practice Guidelines. ERCOFTAC.

2019  
Scimago
H-index
11
Scimago
Journal Rank
0,220
Scimago
Quartile Score
Medicine (miscellaneous) Q3
Scopus
Cite Score
155/133=1,2
Scopus
Cite Score Rank
General Medicine 199/529 (Q2)
Scopus
SNIP
0,343
Scopus
Cites
206
Scopus
Documents
23

 

Interventional Medicine and Applied Science
Language English
Size  
Year of
Foundation
2009
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2061-1617 (Print)
ISSN 2061-5094 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 7 0 0
May 2021 5 0 0
Jun 2021 14 0 0
Jul 2021 8 0 0
Aug 2021 13 0 0
Sep 2021 3 0 0
Oct 2021 0 0 0