View More View Less
  • 1 Department of Plant Taxonomy and Ecology, Eötvös University Ludovika tér 2, H-1083 Budapest, Hungary
  • 2 Department of Plant Taxonomy and Ecology, Eötvös University Ludovika tér 2, H-1083 Budapest, Hungary
  • 3 Department of Plant Taxonomy and Ecology, Eötvös University Ludovika tér 2, H-1083 Budapest, Hungary
Restricted access

The paper advocates a more extensive use of additive trees in community ecology. When the distance/dissimilarity coefficient is selected carefully, these trees can illuminate structural aspects that are not obvious otherwise. In particular, starting from squared distances based on presence/absence data, the resulting trees approximate relationships in species richness, a feature not available through other graphical techniques. The construction of additive trees is illustrated by three actual examples, representing different circumstances in the analysis of grassland community data.

  • Williams, W. T. and J. M. Lambert. 1959. Multivariate methods in plant ecology. I. Association-analysis in plant communities. J. Ecol. 47:83-101.

    'Multivariate methods in plant ecology ' () 47 I. Association-analysis in plant communities. J. Ecol. : 83 -101.

    • Search Google Scholar
  • Zólyomi, B. 1958. Budapest és környékének növénytakarója. In: M. Pécsi (ed.), Budapest természeti képe. Akadémiai Kiadó, Budapest, pp. 508-642.

    Budapest és környékének növénytakarója. , () 508 -642.

  • Swofford, D. L. and G. J. Olsen. 1990. Phylogeny reconstruction. In: D. M. Hillis and C. Moritz (eds.), Molecular Systematics. Sinauer, Sunderland, Mass. pp. 411-501.

    Phylogeny reconstruction. , () 411 -501.

  • Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.

    'The neighbor-joining method: a new method for reconstructing phylogenetic trees ' () 4 Mol. Biol. Evol. : 406 -425.

    • Search Google Scholar
  • Patrinos, A. N. and S. L. Hakimi. 1972. The distance matrix of a graph and its tree realization. Q. Appl. Math. 30:255-269.

    'The distance matrix of a graph and its tree realization ' () 30 Q. Appl. Math. : 255 -269.

    • Search Google Scholar
  • Podani, J. 1985. Syntaxonomic congruence in a small-scale vegetation survey. Abstracta Botanica 9: 99-128.

    'Syntaxonomic congruence in a small-scale vegetation survey ' () 9 Abstracta Botanica : 99 -128.

    • Search Google Scholar
  • Podani, J. 1994. Multivariate Data Analysis in Ecology and Systematics. SPB Publishing, The Hague.

    Multivariate Data Analysis in Ecology and Systematics. , ().

  • Podani, J. 1997. SYN-TAX 5.1: A new version for PC and Macintosh computers. Coenoses 12:149-152.

    'SYN-TAX 5.1: A new version for PC and Macintosh computers ' () 12 Coenoses : 149 -152.

  • Michalski, R. S., I. Bratko and M. Kubat (eds). 1998. Machine learning and data mining: Methods and Applications. Wiley, New York.

    Machine learning and data mining: Methods and Applications. , ().

  • Nei, M. 1996. Phylogenetic analysis in molecular evolutionary genetics. Annu. Rev. Genet. 30: 371-403.

    'Phylogenetic analysis in molecular evolutionary genetics ' () 30 Annu. Rev. Genet. : 371 -403.

    • Search Google Scholar
  • Orlóci, L. 1967. An agglomerative method for classification of plant communities. J. Ecol. 55:193-205.

    'An agglomerative method for classification of plant communities ' () 55 J. Ecol. : 193 -205.

    • Search Google Scholar
  • Page, R. D. M. and E. C. Holmes. 1998. Molecular Evolution. A Phylogenetic Approach. Blackwell, Oxford.

    Molecular Evolution. A Phylogenetic Approach. , ().

  • Dale, M. B. 2000. On plexus representations of dissimilarities. Community Ecology 1.

    'On plexus representations of dissimilarities ' () 1 Community Ecology .

  • Sneath, P.H.A. and Sokal, R. R. 1973. Numerical Taxonomy. Freeman, San Francisco.

    Numerical Taxonomy. , ().

  • Sattath, S. and Tversky, A. 1977. Additive similarity trees. Psychometrika 42:319-344.

    'Additive similarity trees ' () 42 Psychometrika : 319 -344.

  • Shepard, R. N. 1980. Multidimensional scaling, tree-fitting, and clustering. Science 210:390-398.

    'Multidimensional scaling, tree-fitting, and clustering ' () 210 Science : 390 -398.

  • Simon, T. 1992. A magyarországi edényes flóra határozója. Harasztok - Virágos növények. Tankönyvkiadó, Budapest.

    A magyarországi edényes flóra határozója. Harasztok - Virágos növények. , ().

    • Search Google Scholar
  • Tamás, J. and P. Csontos 1998. A növényzet tüz utáni regenerálódása dolomitra telepített feketefeny vesek helyén. (Early regeneration of dolomite vegetation after burning of Pinus nigra plantations. In Hungarian with English summary.) In: P. Csontos (ed.), Sziklagyepek szünbotanikai kutatása. Scientia, Budapest, pp. 231-264.

    A növényzet tüz utáni regenerálódása dolomitra telepített feketefeny vesek helyén. (Early regeneration of dolomite vegetation after burning of Pinus nigra plantations. In Hungarian with English summary.) , () 231 -264.

    • Search Google Scholar
  • Török, K. and B. Zólyomi 1998. A kárpát-medence öt sziklagyeptársulásának szüntaxonómiai reviziója. (Syntaxonomic revision of five rocky grassland communities of the Carpathian Basin. In Hungarian with English summary.) In: P. Csontos (ed.), Sziklagyepek szünbotanikai kutatása. Scientia, Budapest, pp. 109-132.

    A kárpát-medence öt sziklagyeptársulásának szüntaxonómiai reviziója. (Syntaxonomic revision of five rocky grassland communities of the Carpathian Basin. In Hungarian with English summary.) , () 109 -132.

    • Search Google Scholar
  • Westphal, C. and T. Blaxton. 1998. Data Mining Solutions. Wiley, New York

    Data Mining Solutions. , ().

  • Podani, J. 1998. Numerikus cönológiai vizsgálatok a Sas-hegy (Budai-hg.) dolomitsziklagyepjeiben. (A complex numerical analysis of dolomite rock grasslands of the Sas-hegy Nature Reserve, Budapest, Hungary. In Hungarian with English summary) In: P. Csontos (ed.), Sziklagyepek szünbotanikai kutatása. Scientia, Budapest, pp. 211-229.

    Numerikus cönológiai vizsgálatok a Sas-hegy (Budai-hg.) dolomitsziklagyepjeiben. (A complex numerical analysis of dolomite rock grasslands of the Sas-hegy Nature Reserve, Budapest, Hungary. In Hungarian with English summary) , () 211 -229.

    • Search Google Scholar
  • Podani, J. 2000. Simulation of random dendrograms: some comments. J. Classif. 17 (in press).

    'Simulation of random dendrograms: some comments ' () 17 J. Classif .

  • Rosen, D. E. 1978. Vicariant patterns and historical explanation in biogeography. Syst. Zool. 27:159-188.

    'Vicariant patterns and historical explanation in biogeography ' () 27 Syst. Zool. : 159 -188.

    • Search Google Scholar
  • Goodall, D. W. 1953. Objective methods for the classification of vegetation 1. The use of positive interspecific correlation. Aust. J. Bot. 1:39-63.

    'Objective methods for the classification of vegetation 1 ' () 1 The use of positive interspecific correlation. Aust. J. Bot. : 39 -63.

    • Search Google Scholar
  • Lance, G. N. and W. T. Williams. 1967. A general theory of classificatory sorting strategies. I. Hierarchical systems. Computer J. 9:373-380.

    'A general theory of classificatory sorting strategies ' () 9 I. Hierarchical systems. Computer J. : 373 -380.

    • Search Google Scholar
  • Legendre, P. 1986. Reconstructing biogeographic history using phylogenetic-tree analysis of community structure. Syst. Zool. 35:68-80.

    'Reconstructing biogeographic history using phylogenetic-tree analysis of community structure ' () 35 Syst. Zool. : 68 -80.

    • Search Google Scholar
  • Cavalli-Sforza, L. L., A. Piazza, P. Menozzi and J. L. Mountain. 1988. Reconstruction of human evolution: bringing together genetic, archaeological and linguistic data. Proc. Natl. Acad. Sci. USA 85:6002-6006.

    'Reconstruction of human evolution: bringing together genetic, archaeological and linguistic data ' () 85 Proc. Natl. Acad. Sci. USA : 6002 -6006.

    • Search Google Scholar
  • Corter, J. E. 1982. ADDTREE/P: a PASCAL program for fitting additive trees based on Sattath and Tversky's ADDTREE algorithm. Behav. Res. Meth. Instrument. 14: 353-354.

    'ADDTREE/P: a PASCAL program for fitting additive trees based on Sattath and Tversky's ADDTREE algorithm ' () 14 Behav. Res. Meth. Instrument. : 353 -354.

    • Search Google Scholar
  • Cunningham, J. P. 1978. Free trees and bidirectional trees as representations of psychological distance. J. Math. Psychol. 17:165-188.

    'Free trees and bidirectional trees as representations of psychological distance ' () 17 J. Math. Psychol. : 165 -188.

    • Search Google Scholar
  • Dale, M. B. 1989. Mutational and nonmutational similarity measures. Coenoses 3:121-133.

    'Mutational and nonmutational similarity measures ' () 3 Coenoses : 121 -133.

  • Dale, M. B., M. Beatrice and R. Venanzoni. 1986. A comparison of some methods of selecting species in vegetation analysis. Coenoses 1:35-52.

    'A comparison of some methods of selecting species in vegetation analysis ' () 1 Coenoses : 35 -52.

    • Search Google Scholar
  • Day, W. H. E. and H. Edelsbrunner. 1984. Efficient algorithms for agglomerative hierarchical clustering methods. J. Classif. 1:7-24.

    'Efficient algorithms for agglomerative hierarchical clustering methods ' () 1 J. Classif. : 7 -24.

    • Search Google Scholar
  • de Soete, G. 1983. A least squares algorithm for fitting additive trees to proximity data. Pychometrika 48: 621-626.

    'A least squares algorithm for fitting additive trees to proximity data ' () 48 Pychometrika : 621 -626.

    • Search Google Scholar
  • de Soete, G. 1988. Tree representations of proximity data by least squares methods. In: H. H. Bock (ed.), Classification and Related Methods of Data Analysis, North Holland, Amsterdam, pp. 147-156.

    Tree representations of proximity data by least squares methods. , () 147 -156.

  • Digby, P. G. N. and R. A. Kempton. 1987. Multivariate Analysis of Ecological Communities. Chapman and Hall, London.

    Multivariate Analysis of Ecological Communities. , ().

  • Gascuel, O. 1994. A note on Sattath and Tversky's, Saitou and Nei's, and Studier and Keppler's algorithms for inferring phylogenies from evolutionary distances. Mol. Biol. Evol. 11:961-963.

    'A note on Sattath and Tversky's, Saitou and Nei's, and Studier and Keppler's algorithms for inferring phylogenies from evolutionary distances ' () 11 Mol. Biol. Evol. : 961 -963.

    • Search Google Scholar
  • Buneman, P. 1971. The recovery of trees from measures of dissimilarity. In: F. R. Hodson, D. G. Kendall and P. Tautu (eds). Mathematics in the Archaeological and Historical Sciences. Edinburgh Univ. Press, Edinburgh. pp. 387-395.

    The recovery of trees from measures of dissimilarity. , () 387 -395.

  • Carleton, T. J. 1980. Non-centered component analysis of vegetation data: a comparison of orthogonal and oblique rotation. Vegetatio 42: 59-66.

    'Non-centered component analysis of vegetation data: a comparison of orthogonal and oblique rotation ' () 42 Vegetatio : 59 -66.

    • Search Google Scholar
  • Carroll, J. D. and J. J. Chang. 1976. Spatial, non-spatial and hybrid models for scaling. Psychometrika 41:439-463.

    'Spatial, non-spatial and hybrid models for scaling ' () 41 Psychometrika : 439 -463.

  • Wildi, O. and M. Schütz. 2000. Reconstruction of a long-term recovery process from pasture to forest. Community Ecology 1.