Author: M. B. Dale 1
View More View Less
  • 1 Faculty of Environmental Sciences, Griffith University Nathan, Qld. 4111 Australia
Restricted access

Correspondence analysis has found widespread application in analysing vegetation gradients. However, it is not clear how it is robust to situations where structures other than a simple gradient exist. The introduction of instrumental variables in canonical correspondence analysis does not avoid these difficulties. In this paper I propose to examine some simple methods based on the notion of the plexus (sensu McIntosh) where graphs or networks are used to display some of the structure of the data so that an informed choice of models is possible. I showthat two different classes of plexus model are available. These classes are distinguished by the use in one case of a global Euclidean model to obtain well-separated pair decomposition (WSPD) of a set of points which implicitly involves all dissimilarities, while in the other a Riemannian view is taken and emphasis is placed locally, i.e., on small dissimilarities. I showan example of each of these classes applied to vegetation data.

  • Austin, M. P. 1976. On nonlinear species response models in ordination. Vegetatio 33: 33-41.

    'On nonlinear species response models in ordination ' () 33 Vegetatio : 33 -41.

  • Austin, M. P. 1990. Community theory and competition in vegetation. In: J. B. Grace and D. Tilman (eds.), Perspectives on Plant Competition. Academic Press, San Diego. pp. 215-238.

    Community theory and competition in vegetation. , () 215 -238.

  • Babad, Y. M. & J. A. Hoffer. 1984. Even no data has value. Commun. Assoc. Comput. Mach. 27: 748-756.

    'Even no data has value ' () 27 Commun. Assoc. Comput. Mach. : 748 -756.

  • Bandelt, H-J. and A. W. M. Dress. 1992. A canonical decomposition theory for metrics on a finite set. Adv. Math. 92: 47-105.

    'A canonical decomposition theory for metrics on a finite set ' () 92 Adv. Math. : 47 -105.

    • Search Google Scholar
  • Gimingham, C. H. 1961. North European heath communities: a network of variation. J. Ecol. 49: 655-694.

    'North European heath communities: a network of variation ' () 49 J. Ecol. : 655 -694.

  • Gabriel, K. R. and C. L. Odoroff. 1984. Resistant lower rank approximation of matrices. In: E. Diday, M. Jambu, L. Lebart, J. Pagés, and R. Tomassone (eds.), Data Analysis and Informatics III. North Holland, Amsterdam pp. 23-30.

    Resistant lower rank approximation of matrices. , () 23 -30.

  • Gabriel, K. R., C. L. Odoroff and S. Choi. 1988. Fitting lower dimensional ordinations to incomplete similarity data. In: H. H. Bock (ed.), Classification and Related Methods of Data Analysis. Elsevier-North Holland, pp. 445-454.

    Fitting lower dimensional ordinations to incomplete similarity data. , () 445 -454.

  • Dress, A. W. M., D. H. Huson and V. Moulton. 1996. Analyzing and visualizing sequence and distance data using "SplitsTree". Discrete Applied Math. 71: 95-109.

    'Analyzing and visualizing sequence and distance data using "SplitsTree" ' () 71 Discrete Applied Math. : 95 -109.

    • Search Google Scholar
  • Duckworth, J. C., R. G. H. Bunce and A. J. C. Malloch. 2000. Vegetation-environment relationships in Atlantic European calcareous grasslands. J. Veg. Sci. 11: 15-22.

    'Vegetation-environment relationships in Atlantic European calcareous grasslands ' () 11 J. Veg. Sci. : 15 -22.

    • Search Google Scholar
  • Edgoose, T. and L. Allison. 1999. MML Markov classification of sequential data. Statistics and Computing 9: 269-278.

    'MML Markov classification of sequential data ' () 9 Statistics and Computing : 269 -278.

  • Eilertson, O., R. H. Økland, T. Økland and O. Pederson. 1989. The effects of scale range, species removal and downweighting of rare species on eigenvalue and gradient length in DCA ordination. J. Veg. Sci. 1: 261-270.

    'The effects of scale range, species removal and downweighting of rare species on eigenvalue and gradient length in DCA ordination ' () 1 J. Veg. Sci. : 261 -270.

    • Search Google Scholar
  • Eppstein, D. 1992. The farthest point Delaunay triangulation minimizes angles. Computational Geometry Theory and Applications 1: 143-148.

    'The farthest point Delaunay triangulation minimizes angles ' () 1 Computational Geometry Theory and Applications : 143 -148.

    • Search Google Scholar
  • Escofier, B., H. Benali and K. Bachar. 1990. Comment introduire la contiguité en analyse des correspondances? Application en segmentation d'image. Rapport de recherche de l'INRIA - Rennes, RR-1191, 22 pages - Mars 1990.

  • Falinski, J. 1960. Zastosowanie taksonomii wroclawskiej do fitosocjologii. Acta Soc. bot. Pol. 29: 333-361.

    'Zastosowanie taksonomii wroclawskiej do fitosocjologii ' () 29 Acta Soc. bot. Pol. : 333 -361.

    • Search Google Scholar
  • Fayyad, U., G. Piatetsky-Shapiro and P. Smyth. 1996. From Data Mining to Knowledge Discovery. In: U. Fayyad et al. (ed.), Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Menlo Park, CA, pp. 1-34.

    From Data Mining to Knowledge Discovery. , () 1 -34.

  • Friedman, J. H. and L. C. Rafsky. 1979. Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests. Ann. Statist. 7: 697-717.

    'Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests ' () 7 Ann. Statist. : 697 -717.

    • Search Google Scholar
  • Friedman, J. H. and C. L. Rafsky. 1983. Graph-theoretic measures of multivariate association and prediction. Ann. Statist. 11: 377-391.

    'Graph-theoretic measures of multivariate association and prediction ' () 11 Ann. Statist. : 377 -391.

    • Search Google Scholar
  • Birks, H. J. B., S. M. Peglar and H. A. Austin. 1996. An annotated bibliography of canonical correspondence analysis and related constrained ordination methods 1986-1993. Abstracta Botanica 20: 17-36.

    'An annotated bibliography of canonical correspondence analysis and related constrained ordination methods 1986-1993 ' () 20 Abstracta Botanica : 17 -36.

    • Search Google Scholar
  • Bradfield, G. E. and N. C. Kenkel. 1987. Nonlinear ordination using flexible shortest path adjustment of ecological distances. Ecology 68: 750-753.

    'Nonlinear ordination using flexible shortest path adjustment of ecological distances ' () 68 Ecology : 750 -753.

    • Search Google Scholar
  • Cai, L. 1994. NP-completeness of minimum spanner problems. Discrete Appl. Math. 48: 187-194.

    'NP-completeness of minimum spanner problems ' () 48 Discrete Appl. Math. : 187 -194.

  • Camerini, P. M. 1978. The min-max spanning tree problem and some extensions. Inform. Proc. Lett. 7: 10-14.

    'The min-max spanning tree problem and some extensions ' () 7 Inform. Proc. Lett. : 10 -14.

    • Search Google Scholar
  • Camerini, P. M., F. Maffioli, S. Martello and P. Toth. 1986. Most and least uniform spanning trees. Discrete Applied Math. 15: 81-187.

    'Most and least uniform spanning trees ' () 15 Discrete Applied Math. : 81 -187.

  • Chatterjee, S. and A. Narayanan. 1992. A new approach to discrimination and classification using a Hausdorff type metric. Austral. J. Statist. 34: 391-406.

    'A new approach to discrimination and classification using a Hausdorff type metric ' () 34 Austral. J. Statist. : 391 -406.

    • Search Google Scholar
  • Critchlow, D. 1985. Metric Methods for Analyzing Partially Ranked Data. Springer-Verlag. New York.

    Metric Methods for Analyzing Partially Ranked Data. , ().

  • Gabriel, K. R. and R. R. Sokal. 1969. A new statistical approach to geographical analysis. Syst. Zool. 18: 54-64.

    'A new statistical approach to geographical analysis ' () 18 Syst. Zool. : 54 -64.

  • Barkman, J. J. 1965. Die Kryptogamenflora einiger Vegetationstypen in Drente und ihr Zusammenhang mit Boden und Mikroklima. In: R. Tuxen (ed.), Biosoziologie, Ber. Symp. Int. Ver. Vegetskunde. Stolzenau/Weser 1960, pp. 157-171.

    Die Kryptogamenflora einiger Vegetationstypen in Drente und ihr Zusammenhang mit Boden und Mikroklima. , () 157 -171.

    • Search Google Scholar
  • Beals, E. W. 1973. Ordination: mathematical elegance and ecological naivete. J. Ecol. 61: 23-35.

    'Ordination: mathematical elegance and ecological naivete ' () 61 J. Ecol. : 23 -35.

  • Culik II, K. and H. A. Maurer. 1978. String representations of graphs. Internt. J. Computer Math. Sect. A 6: 272-301.

    'String representations of graphs ' () A 6 Internt. J. Computer Math. Sect. : 272 -301.

  • Dale, M. B. 1975. On the objectives of ordination. Vegetatio 30: 15-32.

    'On the objectives of ordination ' () 30 Vegetatio : 15 -32.

  • Dale, M. B. 1994. Straightening the horseshoe: a Riemannian resolution? Coenoses 9: 43-53.

    'Straightening the horseshoe: a Riemannian resolution? ' () 9 Coenoses : 43 -53.

  • De'ath, G. 1999. Principal curves: a new technique for indirect and direct gradient analysis. Ecology 80: 2237-2253.

    'Principal curves: a new technique for indirect and direct gradient analysis ' () 80 Ecology : 2237 -2253.

    • Search Google Scholar
  • Godehardt, E. and H. Herrmann. 1988. Multigraphs as a tool for numerical classification. In: H. Bock (ed.), Classification and related methods of Data Analysis. Elsevier, North Holland. pp. 219-229.

    Multigraphs as a tool for numerical classification. , () 219 -229.

  • Goodall, D. W. and R. W. Johnson. 1982. Non-linear ordination in several dimensions: a maximum likelihood approach. Vegetatio 48: 197-208.

    'Non-linear ordination in several dimensions: a maximum likelihood approach ' () 48 Vegetatio : 197 -208.

    • Search Google Scholar
  • Goodall, D. W. and R. W. Johnson. 1987. Maximum likelihood ordination: some improvements. Vegetatio 73: 3-13.

    'Maximum likelihood ordination: some improvements ' () 73 Vegetatio : 3 -13.

  • Hill, M. O. 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 237-249.

    'Reciprocal averaging: an eigenvector method of ordination ' () 61 J. Ecol. : 237 -249.

  • Hubert, L. and P. Arabie. 1992. Correspondence analysis and optimal structural representations. Psychometrika 56: 119-140.

    'Correspondence analysis and optimal structural representations ' () 56 Psychometrika : 119 -140.

    • Search Google Scholar
  • Hubert, L. and P. Arabie. 1994. The analysis of proximity matrices through sums of matrices having (anti-)Robinson forms. Brit. J. Math. Statist. Psychol. 47: 1-40.

    'The analysis of proximity matrices through sums of matrices having (anti-)Robinson forms ' () 47 Brit. J. Math. Statist. Psychol. : 1 -40.

    • Search Google Scholar
  • Hubert, L. and J. Schultz. 1975. Hierarchical clustering and the concept of space distortion. Brit. J. Math. Statist. Psychol. 28: 121-133.

    'Hierarchical clustering and the concept of space distortion ' () 28 Brit. J. Math. Statist. Psychol. : 121 -133.

    • Search Google Scholar
  • Karadžić, B. and R. Popović. 1994. A generalized standardization procedure in ecological ordination: test with Principal Components Analysis. J. Veg. Sci. 5: 259-262.

    'A generalized standardization procedure in ecological ordination: test with Principal Components Analysis ' () 5 J. Veg. Sci. : 259 -262.

    • Search Google Scholar
  • Keil, J. M. and C. A. Gutwin. 1992. Classes of graphs which approximate the complete Euclidean graph. Computational Geometry 7: 13-28.

    'Classes of graphs which approximate the complete Euclidean graph ' () 7 Computational Geometry : 13 -28.

    • Search Google Scholar
  • Kendall, D. G. 1971. Seriation from abundance matrices. In: F. R. Hodson, D. G. Kendall and P. Tautu (eds.), Mathematics in the Archaeological and Historical Sciences. Edinburgh Univ. Press. pp. 215-252.

    Seriation from abundance matrices. , () 215 -252.

  • Klauer, K. C. 1989. Ordinal network representation: representing proximities by graphs. Psychometrika 54: 737-750.

    'Ordinal network representation: representing proximities by graphs ' () 54 Psychometrika : 737 -750.

    • Search Google Scholar
  • Levcopoulos, C. and A. Lingas. 1989. There are planar graphs almost as good as complete graphs and about as cheap as the minimal spanning tree. Proc. Internatl. Symp. Optimal Algorithms. Lecture Notes in Computer Science 401, Springer, Berlin. pp. 9-13.

    'There are planar graphs almost as good as complete graphs and about as cheap as the minimal spanning tree ' , , .

    • Search Google Scholar
  • Allison, L. & C. S. Wallace. 1994. The posterior probability distribution of alignments and its application to parameter estimation of evolutionary trees and to optimisation of multiple alignments. J. Molecular Evolution 39:418-430.

    'The posterior probability distribution of alignments and its application to parameter estimation of evolutionary trees and to optimisation of multiple alignments ' () 39 J. Molecular Evolution : 418 -430.

    • Search Google Scholar
  • Hubert, L. and J. Schultz. 1976. Quadratic assignment as a general data analysis strategy. Brit. J. Math. Statist. Psychol. 29: 190-241.

    'Quadratic assignment as a general data analysis strategy ' () 29 Brit. J. Math. Statist. Psychol. : 190 -241.

    • Search Google Scholar
  • Huisman, J., H. Olff and L. F. M. Fresco. 1993. A hierarchical set of models for species response analysis. J. Veg. Sci. 4: 37-46.

    'A hierarchical set of models for species response analysis ' () 4 J. Veg. Sci. : 37 -46.

  • Ihm, P. and H. van Groenewoud. 1972A multivariate ordering of vegetation data based on Gaussian type gradient response curves J. Ecol. 63: 767-777.

    'multivariate ordering of vegetation data based on Gaussian type gradient response curves ' () 63 J. Ecol. : 767 -777.

    • Search Google Scholar
  • Althöfer, I., G. Das, D. Dobkin, D. Joseph and J. Soares. 1993 On sparse spanners of weighted graphs. Discrete Comput. Geom. 9:81-100.

    'On sparse spanners of weighted graphs ' () 9 Discrete Comput. Geom. : 81 -100.

  • Ash, P. F. and E. D. Bolker. 1986. Generalized Dirichlet tessellation. Geometriae Dedicata 20: 209-243.

    'Generalized Dirichlet tessellation ' () 20 Geometriae Dedicata : 209 -243.

  • Aurenhammer, F. 1991. Voronoi diagrams - a survey of a fundamental geometric data structure. A. C. M. Computing Surveys 23: 345-405.

    'Voronoi diagrams - a survey of a fundamental geometric data structure ' () 23 A. C. M. Computing Surveys : 345 -405.

    • Search Google Scholar
  • de Soete, G. 1988. Tree representations of proximity data by least squares methods. In: H. H. Bock (ed.), Classification and Related Methods of Data Analysis. North Holland, Amsterdam, pp. 147-156.

    Tree representations of proximity data by least squares methods. , () 147 -156.

  • de Vries 1952. Objective combination of species. Acta Bot. Neerl. 1: 497-499.

    'Objective combination of species ' () 1 Acta Bot. Neerl. : 497 -499.

  • de Vries, D. M., J. P. Baretta and G. Haming. 1954. Constellation of frequent herbage plants based on their correlation in occurrence. Vegetatio 5/6: 105-111.

    'Constellation of frequent herbage plants based on their correlation in occurrence ' () 5/6 Vegetatio : 105 -111.

    • Search Google Scholar
  • Deichsel, G. 1980. Random walk clustering in large data sets. COMPSTAT 1980. Physica-Verlag, Vienna pp. 454-459.

    Random walk clustering in large data sets. COMPSTAT 1980. , () 454 -459.

  • Diday, E. and P. Bertrand. 1986. An extension to hierarchical clustering: the pyramidal presentation. In: E. S. Gelsema and L. N. Kanak (eds.), Pattern Recognition in Practice. Elsevier Science, Amsterdam. pp. 411-424.

    An extension to hierarchical clustering: the pyramidal presentation. , () 411 -424.

  • Dobkin, D., S. J. Friedman. and K. J. Supowit. 1990. Delaunay graphs are almost as good as complete graphs. Discrete Comput. Geom. 5: 399-407.

    'Delaunay graphs are almost as good as complete graphs ' () 5 Discrete Comput. Geom. : 399 -407.

    • Search Google Scholar
  • McIntosh, R. P. 1973. Matrix and plexus techniques. In: R. H. Whittaker (ed.), Ordination and Classification of Communities. Dr. W. Junk, den Haag. pp. 157-191.

    Matrix and plexus techniques. , () 157 -191.

  • Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89-107.

    'An evaluation of the relative robustness of techniques for ecological ordination ' () 69 Vegetatio : 89 -107.

    • Search Google Scholar
  • Mulder, H. M. and A. Schrijver. 1979. Median graphs and Helly hypergraphs. Discrete Mathematics 25: 41-50.

    'Median graphs and Helly hypergraphs ' () 25 Discrete Mathematics : 41 -50.

  • Murtagh, F. 1983. A probability theory of hierarchic clustering using random dendrograms. J. Statist. Comput. Simul. 18: 145-157.

    'A probability theory of hierarchic clustering using random dendrograms ' () 18 J. Statist. Comput. Simul. : 145 -157.

    • Search Google Scholar
  • Naga, R. A. and G. Antille. 1990. Stability of robust and non-robust principal components analysis. Comput. Statist. Data Anal. 10: 169-174.

    'Stability of robust and non-robust principal components analysis ' () 10 Comput. Statist. Data Anal. : 169 -174.

    • Search Google Scholar
  • Naouri, J-C. 1970. Analyse factorielle des correspondances continues. Publ. l'Inst. Statist. Univ. Paris 19: 1-100.

    'Analyse factorielle des correspondances continues ' () 19 Publ. l'Inst. Statist. Univ. Paris : 1 -100.

    • Search Google Scholar
  • O'Callaghan, J. 1974. An alternative definition for the neighbourhood of a point. I.E.E.E. Trans. Comput. C-24: 1121-1125.

    'An alternative definition for the neighbourhood of a point ' () C-24 I.E.E.E. Trans. Comput. : 1121 -1125.

    • Search Google Scholar
  • Williams, W. T., J. S. Bunt and H. J. Clay. 1991. Yet another method of species-sequencing. Marine Ecol. Prog. Ser. 72: 283-287.

    'Yet another method of species-sequencing ' () 72 Marine Ecol. Prog. Ser. : 283 -287.

  • Wishart, D. 1969. Mode analysis: A generalisation of nearest neighbour which reduces chaining effects. In: A. J. Cole (ed.), Numerical Taxonomy. Academic Press, New York. pp. 282-308.

    Mode analysis: A generalisation of nearest neighbour which reduces chaining effects. , () 282 -308.

    • Search Google Scholar
  • Yanai, H. 1988. Partial correspondence analysis and its properties. In: E. Diday, C. Hayashi, M. Jambu and N. Ohsumi (eds.), Recent Developments in Clustering and Data Analysis. Academic Press, New York and London. pp. 259-266.

    Partial correspondence analysis and its properties. , () 259 -266.

  • Oksanen, J. and R. R. Minchin. 1997. Instability of ordination results under changes in input data order: explanations and remedies. J. Veg. Sci. 8: 447-454.

    'Instability of ordination results under changes in input data order: explanations and remedies ' () 8 J. Veg. Sci. : 447 -454.

    • Search Google Scholar
  • Orth, B. 1988. Representing similarities by distance graphs: monotone network analysis (MONA). In: H. H. Bock (ed.), Classification and Related methods of Data Analysis. North Holland, Amsterdam. pp. 489-496.

    Representing similarities by distance graphs: monotone network analysis (MONA). , () 489 -496.

    • Search Google Scholar
  • Posse, C. 1995. Tools for two-dimensional exploratory projection pursuit. J. Computer Graphics Statist. 4: 83-100.

    'Tools for two-dimensional exploratory projection pursuit ' () 4 J. Computer Graphics Statist. : 83 -100.

    • Search Google Scholar
  • Taguri, M., M. Hiramatsu, T. Kittaka and K. Wakimoto. 1976. Graphical representation of correlation analysis of ordered data by linked vector pattern. J. Jap. Statist. Soc. 6: 17-25.

    'Graphical representation of correlation analysis of ordered data by linked vector pattern ' () 6 J. Jap. Statist. Soc. : 17 -25.

    • Search Google Scholar
  • Tamassia, R. and I. G. Tollis. 1995. Graph Drawing. DIMACS Internatl. Workshop, Princeton 1994. Lecture Notes in Computer Science 894, Springer, Berlin.

    Graph Drawing. DIMACS Internatl. Workshop, Princeton 1994. , ().

  • Tausch, R. J., D. A. Charlet, D. A. Weixelman and D. C. Zamudio. 1995. Patterns of ordination and classification instability resulting from changes in input data order. J. Veg. Sci. 6: 897-902.

    'Patterns of ordination and classification instability resulting from changes in input data order ' () 6 J. Veg. Sci. : 897 -902.

    • Search Google Scholar
  • ter Braak, C. J. F. 1986. Canonical correspondence analysis a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179.

    'Canonical correspondence analysis a new eigenvector technique for multivariate direct gradient analysis ' () 67 Ecology : 1167 -1179.

    • Search Google Scholar
  • Toussaint, G. T. 1980. The relative neighbourhood graph of a finite planar set. Patt. Recog. 12: 261-268.

    'The relative neighbourhood graph of a finite planar set ' () 12 Patt. Recog. : 261 -268.

  • Vaidya, P. M. 1991. A sparse graph almost as good as the complete graph on points in K dimensions. Discrete Comput. Geom. 6: 369-381.

    'A sparse graph almost as good as the complete graph on points in K dimensions ' () 6 Discrete Comput. Geom. : 369 -381.

    • Search Google Scholar
  • Van Groenewoud, H. 1992. The robustness of Correspondence, Detrended Correspondence and TWINSPAN analysis. J. Veg. Sci. 3: 239-246.

    'The robustness of Correspondence, Detrended Correspondence and TWINSPAN analysis ' () 3 J. Veg. Sci. : 239 -246.

    • Search Google Scholar
  • Vasilevich, V. I. 1967. A continuum in the coniferous and parvifoliate forest of the Karelian isthmus. Bot. Zhur. SSSR 52: 45-53 (in Russian).

    'A continuum in the coniferous and parvifoliate forest of the Karelian isthmus ' () 52 Bot. Zhur. SSSR : 45 -53 (in Russian).

    • Search Google Scholar
  • Veltkamp, R. C. 1992. The γ-neighbourhood graph. Computational Geometry: Theory and Applications 1: 227-246.

    'The γ-neighbourhood graph ' () 1 Computational Geometry: Theory and Applications : 227 -246.

    • Search Google Scholar
  • Wallace, C. S. 1995. Multiple factor analysis by MML estimation Tech. Rep. 95/218, Dept Computer Science, Monash University, Clayton Victoria 3168, Australia 21 pp.

    Multiple factor analysis by MML estimation Tech. Rep. 95/218, Dept Computer Science , () 21.

    • Search Google Scholar
  • Wallace, C. S. & D. L. Dowe. 2000. MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions. Statistics and Computing 10: 73-83.

    'MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions ' () 10 Statistics and Computing : 73 -83.

    • Search Google Scholar
  • Williams, W. T. 1973. Partition of information: the CENTPERC problem. Austral. J. Bot. 21: 277-281.

    'Partition of information: the CENTPERC problem ' () 21 Austral. J. Bot. : 277 -281.

  • Williams, W. T. 1980. TWONET: A new program for the computation of a two-neighbour network. Austral. Comput. J. 12: 70.

    'TWONET: A new program for the computation of a two-neighbour network ' () 12 Austral. Comput. J. : 70.

    • Search Google Scholar
  • Maa, J-F, D. K. Pearl and R. Bartoszyński. 1996. Reducing multidimensional two-sample data to one-dimensional interpoint comparisons. Annals Statistics 24: 1069-1074.

    'Reducing multidimensional two-sample data to one-dimensional interpoint comparisons ' () 24 Annals Statistics : 1069 -1074.

    • Search Google Scholar
  • Agarwal, P. K., J. Matousek and S. Suri. 1992. Farthest neighbors, maximum spanning trees, and related problems in higher dimensions. Comput. Geom.: Theory and Appl. 4:189-201.

    'Farthest neighbors, maximum spanning trees, and related problems in higher dimensions ' () 4 Comput. Geom.: Theory and Appl. : 189 -201.

    • Search Google Scholar
  • Al Ayouti, B. 1992. New forms of graphical representation in data analysis: additive forests. Proc Conf. Distancia, Rennes.

    'New forms of graphical representation in data analysis: additive forests' , , .

  • Famili, A. and P. Turney. 1991. Intelligently Helping Human Planner in Industrial Process Planning. AIEDAM 5: 109-124.

    () AIEDAM 5 Intelligently Helping Human Planner in Industrial Process Planning. : 109 -124.

    • Search Google Scholar