View More View Less
  • 1 Institute of Ecology and Botany of the Hungarian Academy of Sciences Vácrátót Hungary
  • | 2 Eötvös Loránd University Department of Plant Taxonomy and Ecology, Institute of Biology Pázmány Péter s. 1.c H-1117 Budapest Hungary
Restricted access

Biome interfaces are expected to exhibit chorological symmetry, i.e., decreasing trends in the number of species associated with each of the two neighbouring biomes as we progress from one into the other. Our aim was to test for such a pattern within the forest steppe biome, which is a transition zone in itself between the temperate deciduous forests and the steppe biome. Presence of chorological symmetry would provide indirect evidence for the prehuman presence of zonal steppes in the Carpathian basin. We also whished to provide an example with this analysis for drawing biogeographical conclusions based on quantitative species occurrence data, an information source hitherto neglected in Central Europe. Occurrence patterns of forest and steppe species were analysed at the Duna-Tisza köze (Danube-Tisza Interfluve) by the traditional qualitative biogeographic method and by hierarchical classification of predicted spatial pattern based on Generalized Linear Models with logistic link function. Species presences were explained by variables describing spatial orientation. In this approach, an outgroup of sand grassland species was also added to characetrise the discrimination ability of the approach. The quantitative method discriminated the out-group of sand grassland species, providing evidence of its suitability for our purpose. The results of the quantitative investigations were also in accordance with the qualitative evaluation. Surprisingly, forest and steppe species showed similar distributional patterns, i.e., no chorological symmetry was discernable. The quantitative biogeographic approach unveiled important evidence for deciding about the potential presence of zonal steppes in the Carpathian basin. Although the observed similarity of the distribution of forest and steppe species may have multiple reasons, the major cause of the lack of chorological symmetry is most probably the lack of zonal steppe South of the forest steppe biome in the Carpathian basin. Additional explanations include land use pattern and the mountain belt around the basin acting as a refugium in the ice ages.

Supplementary Materials

    • Supplementary Material

Click HERE for submission guidelines.

Manuscript submission: COMEC Manuscript Submission


Senior editors

Editor(s)-in-Chief: Podani, János

Editor(s)-in-Chief: Jordán, Ferenc

Honorary Editor(s): Orlóci, László

Editorial Board

  • Madhur Anand, CAN (forest ecology, computational ecology, and ecological complexity)
  • S. Bagella, ITA (temporal dynamics, including succession, community level patterns of species richness and diversity, experimental studies of plant, animal and microbial communities, plant communities of the Mediterranean)
  • P. Batáry, HUN (landscape ecology, agroecology, ecosystem services)
  • P. A. V. Borges, PRT (community level patterns of species richness and diversity, sampling in theory and practice)
  • A. Davis, GER (supervised learning, multitrophic interactions, food webs, multivariate analysis, ecological statistics, experimental design, fractals, parasitoids, species diversity, community assembly, ticks, biodiversity, climate change, biological networks, cranes, olfactometry, evolution)
  • Z. Elek, HUN (insect ecology, invertebrate conservation, population dynamics, especially of long-term field studies, insect sampling)
  • T. Kalapos, HUN (community level plant ecophysiology, grassland ecology, vegetation-soil relationship)
  • G. M. Kovács, HUN (microbial ecology, plant-fungus interactions, mycorrhizas)
  • W. C. Liu,TWN (community-based ecological theory and modelling issues, temporal dynamics, including succession, trophic interactions, competition, species response to the environment)
  • L. Mucina, AUS (vegetation survey, syntaxonomy, evolutionary community ecology, assembly rules, global vegetation patterns, mediterranean ecology)
  • P. Ódor, HUN (plant communities, bryophyte ecology, numerical methods)
  • F. Rigal, FRA (island biogeography, macroecology, functional diversity, arthropod ecology)
  • D. Rocchini, ITA (biodiversity, multiple scales, spatial scales, species distribution, spatial ecology, remote sensing, ecological informatics, computational ecology)
  • F. Samu, HUN (landscape ecology, biological control, generalist predators, spiders, arthropods, conservation biology, sampling methods)
  • U. Scharler, ZAF (ecological networks, food webs, estuaries, marine, mangroves, stoichiometry, temperate, subtropical)
  • D. Schmera, HUN (aquatic communities, functional diversity, ecological theory)
  • M. Scotti, GER (community-based ecological theory and modelling issues, trophic interactions, competition, species response to the environment, ecological networks)
  • B. Tóthmérész, HUN (biodiversity, soil zoology, spatial models, macroecology, ecological modeling)
  • S. Wollrab, GER (aquatic ecology, food web dynamics, plankton ecology, predator-prey interactions)


Advisory Board

  • S. Bartha, HUN
  • S.L. Collins, USA
  • T. Czárán, HUN
  • E. Feoli, ITA
  • N. Kenkel, CAN
  • J. Lepš, CZE
  • S. Mazzoleni, ITA
  • Cs. Moskát, HUN
  • B. Oborny, HUN
  • M.W. Palmer, USA
  • G.P. Patil, USA
  • V. de Patta Pillar, BRA
  • C. Ricotta, ITA
  • Á. Szentesi, HUN



Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Biology & Environmental Sciences
  • Elsevier/Geo Abstracts
  • Science Citation Index Expanded
  • Zoological Abstracts



Community Ecology
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)