Authors:
D. Schmera

Search for other papers by D. Schmera in
Current site
Google Scholar
PubMed
Close
and
J. Podani L. Eötvös University Department of Plant Taxonomy and Ecology, Institute of Biology Pázmány P. s. 1/C H-1117 Budapest Hungary

Search for other papers by J. Podani in
Current site
Google Scholar
PubMed
Close
Restricted access

Beta diversity, species replacement and nestedness are often examined through pairwise comparisons of sites based on presence-absence data, and the relative importance of these ecological phenomena is evaluated by operations with dissimilarity coefficients. An example is the nestedness resultant dissimilarity (NRD) procedure recently proposed by Baselga (2010, Global Ecology andBiogeography 19: 134–143) to disentangle the nestedness fraction of beta diversity from species replacement. In our view, the component terms in this measure are not scaled uniformly and the nestedness fraction cannot be quantified properly without giving clear definitions for its measurement. We suggest to distinguish among three additive fractions of the species set of two sites: number of species shared (overlap), species replacement (=spatial turnover) and richness difference. Then, absolute beta diversity is obtained as a composite of the second two fractions (known as βWB), while nestedness is derived from the first and the third. To express beta diversity and nestedness in a relativized form, the respective sums are divided by the total number of species. These allow defining a new index to measure the fraction of beta diversity which is shared by nestedness as well, and is calculated as relativized richness difference with the condition that the two sites being compared have at least one species in common. It is called diversity-nestedness intersection coefficient (F). Baselga’s nestedness resultant dissimilarity and the diversity-nestedness intersection coefficient are compared graphically using artificial and actual examples. These functions follow a mathematical relationship for perfectly nested data, otherwise their results are divergent. Discrepancy increases when beta diversity is large, especially if richness differences override species replacement effects in shaping presence-absence data structures. An advantage of F is its compatibility with a general theoretical and methodological framework for revealing pattern in presence-absence data matrices.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)