Author:
N. Kenkel University of Manitoba Department of Biological Sciences Winnipeg Canada

Search for other papers by N. Kenkel in
Current site
Google Scholar
PubMed
Close
Restricted access

Over the past several decades, fractal geometry has found widespread application in the theoretical and experimental sciences to describe the patterns and processes of nature. The defining features of a fractal object (or process) are self-similarity and scale-invariance; that is, the same pattern of complexity is present regardless of scale. These features imply that fractal objects have an infinite level of detail, and therefore require an infinite sample size for their proper characterization. In practice, operational algorithms for measuring the fractal dimension D of natural objects necessarily utilize a finite sample size of points (or equivalently, finite resolution of a path, boundary trace or other image). This gives rise to a paradox in empirical dimension estimation: the object whose fractal dimension is to be estimated must first be approximated as a finite sample in Euclidean embedding space (e.g., points on a plane). This finite sample is then used to obtain an approximation of the true (but unknown) fractal dimension. While many researchers have recognized the problem of estimating fractal dimension from a finite sample, none have addressed the theoretical relationship between sample size and the reliability of dimension estimates based on box counting. In this paper, a theoretical probability-based model is developed to examine this relationship. Using the model, it is demonstrated that very large sample sizes — typically, one to many orders of magnitude greater than those used in most empirical studies — are required for reliable dimension estimation. The required sample size increases exponentially with D, and a 10D increase in sampling effort is required for each decadal (order of magnitude) increase in the scaling range over which dimension is reliably estimated. It is also shown that dimension estimates are unreliable for box counts exceeding one-tenth the sample size.

  • Agterberg, F.P. 2013. Fractals and spatial statistics of point patterns. J. Earth Sci. 24: 1–11.

    Agterberg F.P. , 'Fractals and spatial statistics of point patterns ' (2013 ) 24 J. Earth Sci. : 1 -11 .

    • Search Google Scholar
  • Avnir, D., O. Biham, D. Lidar and O. Malcai. 1998. Is the geometry of nature fractal? Science 279: 39–40.

    Malcai O. , 'Is the geometry of nature fractal ' (1998 ) 279 Science : 39 -40 .

  • Bernston, G.M. and P. Stoll. 1997. Correcting for finite spatial scales of self-similarity when calculating the fractal dimensions of real-world structures. Proc. Royal Soc. London B 264: 1531–1537.

    Stoll P. , 'Correcting for finite spatial scales of self-similarity when calculating the fractal dimensions of real-world structures ' (1997 ) 264 Proc. Royal Soc. London B : 1531 -1537 .

    • Search Google Scholar
  • Bez, N. and S. Bertrand. 2011. The duality of fractals: roughness and self-similarity. Theor. Ecol. 4: 371–383.

    Bertrand S. , 'The duality of fractals: roughness and self-similarity ' (2011 ) 4 Theor. Ecol. : 371 -383 .

    • Search Google Scholar
  • Brewer, J. and L. Di Girolamo. 2006. Limitations of fractal dimension estimation algorithms with implications for cloud studies. Atmos. Res. 82: 433–454.

    Girolamo L. , 'Limitations of fractal dimension estimation algorithms with implications for cloud studies ' (2006 ) 82 Atmos. Res. : 433 -454 .

    • Search Google Scholar
  • Buczkowski, S., P. Hildgen and L. Cartilier. 1998. Measurements of fractal dimension by box-counting: a critical analysis of data scatter. Physica A 252: 23–34.

    Cartilier L. , 'Measurements of fractal dimension by box-counting: a critical analysis of data scatter ' (1998 ) 252 Physica A : 23 -34 .

    • Search Google Scholar
  • Cheng, Q. and F.P. Agterberg. 1995. Multifractal modeling and spatial point processes. Math. Geol. 27: 831–845.

    Agterberg F.P. , 'Multifractal modeling and spatial point processes ' (1995 ) 27 Math. Geol. : 831 -845 .

    • Search Google Scholar
  • Ciccotti, M. and F. Mulargia. 2002. Pernicious effect of physical cutoffs in fractal analysis. Phys. Rev. E 65: 037201.

    Mulargia F. , 'Pernicious effect of physical cutoffs in fractal analysis ' (2002 ) 65 Phys. Rev. E : 037201 -.

    • Search Google Scholar
  • Falconer, K.J. 2003. Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester.

    Falconer K.J. , '', in Fractal Geometry: Mathematical Foundations and Applications , (2003 ) -.

  • Falconer, K.J. 2013. Fractals: A Very Short Introduction. Oxford Univ. Press, Oxford.

    Falconer K.J. , '', in Fractals: A Very Short Introduction , (2013 ) -.

  • Foroutan-pour, K., P. Dutilleul and D.L. Smith. 1999. Advances in the implementation of the box-counting method of fractal dimension estimation. Appl. Math. Comput. 105: 195–210.

    Smith D.L. , 'Advances in the implementation of the box-counting method of fractal dimension estimation ' (1999 ) 105 Appl. Math. Comput. : 195 -210 .

    • Search Google Scholar
  • Gneiting, T., H. Sevcikova and D.B. Percival. 2012. Estimators of fractal dimension: assessing the roughness of time series and spatial data. Statist. Sci. 27: 247–277.

    Percival D.B. , 'Estimators of fractal dimension: assessing the roughness of time series and spatial data ' (2012 ) 27 Statist. Sci. : 247 -277 .

    • Search Google Scholar
  • Gonzato, G., F. Mulargia and W. Marzocchi. 1998. Practical application of fractal analysis: problems and solutions. Geophys. J. Int. 132: 275–282.

    Marzocchi W. , 'Practical application of fractal analysis: problems and solutions ' (1998 ) 132 Geophys. J. Int. : 275 -282 .

    • Search Google Scholar
  • Gonzato, G., F. Mulargia and M. Ciccotti. 2000. Measuring the fractal dimensions of ideal and actual objects: implications for application in geology and geophysics. Geophys. J. Int. 142: 108–116.

    Ciccotti M. , 'Measuring the fractal dimensions of ideal and actual objects: implications for application in geology and geophysics ' (2000 ) 142 Geophys. J. Int. : 108 -116 .

    • Search Google Scholar
  • Grassberger, P. and I. Procaccia. 1983. Characterization of strange attractors. Phys. Rev. Letters 50: 346–349.

    Procaccia I. , 'Characterization of strange attractors ' (1983 ) 50 Phys. Rev. Letters : 346 -349 .

    • Search Google Scholar
  • Hagen, C.A., N.C. Kenkel, D.J. Walker, R.K. Baydack and C.E. Braun. 2001. Fractal-based spatial analysis of radio telemetry data. In: Millspaugh, J.J., J.M. Marzluff and R. Kneward (eds.), Radio Tracking and Animal Populations. Academic Press, San Diego. pp. 167–187.

    Braun C.E. , '', in Radio Tracking and Animal Populations , (2001 ) -.

  • Hall, P. 1995. On the effect of measuring a self-similar process. SIAM J. Appl. Math. 55: 800–808.

    Hall P. , 'On the effect of measuring a self-similar process ' (1995 ) 55 SIAM J. Appl. Math. : 800 -808 .

    • Search Google Scholar
  • Halley, J.M., S. Harley, A.S. Kallimanis, W.E. Kunin, J.J. Lennon and P. Sgardelis. 2004. Uses and abuses of fractal methodology in ecology. Ecol. Letters 7: 254–271.

    Sgardelis P. , 'Uses and abuses of fractal methodology in ecology ' (2004 ) 7 Ecol. Letters : 254 -271 .

    • Search Google Scholar
  • Hamburger, D., O. Biham and D. Avnir. 1996. Apparent fractality emerging from models of random distributions. Phys. Rev. E 53: 3342–3358.

    Avnir D. , 'Apparent fractality emerging from models of random distributions ' (1996 ) 53 Phys. Rev. E : 3342 -3358 .

    • Search Google Scholar
  • Huang, Q., J.R. Lorch and R.C. Dubes. 1994. Can the fractal dimension of images be measured? Pattern Recog. 27: 339–349.

    Dubes R.C. , 'Can the fractal dimension of images be measured ' (1994 ) 27 Pattern Recog. : 339 -349 .

    • Search Google Scholar
  • Kallimanis, A.S., S.P. Sgardelis and J.M. Halley. 2002. Accuracy of fractal dimension estimates for small samples of ecological distributions. Land. Ecol. 17: 281–297.

    Halley J.M. , 'Accuracy of fractal dimension estimates for small samples of ecological distributions ' (2002 ) 17 Land. Ecol. : 281 -297 .

    • Search Google Scholar
  • Kenkel, N.C. and D.J. Walker. 1996. Fractals in the biological sciences. Coenoses 11: 77–100.

    Walker D.J. , 'Fractals in the biological sciences ' (1996 ) 11 Coenoses : 77 -100 .

  • Kiselev, V.G., K.R. Hahn and D.P. Auer. 2003. Is the brain cortex a fractal? NeuroImage 20: 1765–1774.

    Auer D.P. , 'Is the brain cortex a fractal ' (2003 ) 20 NeuroImage : 1765 -1774 .

  • Liebovitch, L.S. and T. Toth. 1989. A fast algorithm to determine fractal dimensions by box counting. Phys. Letters A 141: 386–390.

    Toth T. , 'A fast algorithm to determine fractal dimensions by box counting ' (1989 ) 141 Phys. Letters A : 386 -390 .

    • Search Google Scholar
  • Lopes, R. and N. Betrouni. 2009. Fractal and multifractal analysis: a review. Med. Image Anal. 13: 634–649.

    Betrouni N. , 'Fractal and multifractal analysis: a review ' (2009 ) 13 Med. Image Anal. : 634 -649 .

    • Search Google Scholar
  • Malcai, O., D.A. Lidar and O. Biham. 1997. Scaling range and cut-offs in empirical fractals. Phys. Rev. E 56: 2817–2828.

    Biham O. , 'Scaling range and cut-offs in empirical fractals ' (1997 ) 56 Phys. Rev. E : 2817 -2828 .

    • Search Google Scholar
  • Mandelbrot, B. 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156: 636–638.

    Mandelbrot B. , 'How long is the coast of Britain? Statistical self-similarity and fractional dimension ' (1967 ) 156 Science : 636 -638 .

    • Search Google Scholar
  • Nams, V. 2006. Improving accuracy and precision in estimating fractal dimensions of animal movement paths. Acta Biotheor. 54: 1–11.

    Nams V. , 'Improving accuracy and precision in estimating fractal dimensions of animal movement paths ' (2006 ) 54 Acta Biotheor. : 1 -11 .

    • Search Google Scholar
  • Ogata, Y. and K. Katsura. 1991. Maximum likelihood estimates of the fractal dimension for random spatial patterns. Biometrika 78: 463–474.

    Katsura K. , 'Maximum likelihood estimates of the fractal dimension for random spatial patterns ' (1991 ) 78 Biometrika : 463 -474 .

    • Search Google Scholar
  • Panico, J. and P. Sterling. 1995. Retinal neurons and vessels are not fractal but space-filling. J. Compar. Neurol. 361: 479–490.

    Sterling P. , 'Retinal neurons and vessels are not fractal but space-filling ' (1995 ) 361 J. Compar. Neurol. : 479 -490 .

    • Search Google Scholar
  • Pérez-Rodríguez, L., R. Jovani and F. Mougeot. 2013. Fractal geometry of a complex plumage trait reveals bird’s quality. Proc. Royal Soc. B 280: 20122783.

    Mougeot F. , 'Fractal geometry of a complex plumage trait reveals bird’s quality ' (2013 ) 280 Proc. Royal Soc. B : 20122783 -.

    • Search Google Scholar
  • Pruess, S.A. 1995. Some remarks on the numerical estimation of fractal dimension. In: Barton, C.C. and P.R. La Pointe (eds.), Fractals in the Earth Sciences. Plenum, New York. pp. 65–75.

    Pruess S.A. , '', in Fractals in the Earth Sciences , (1995 ) -.

  • Ramsey, J.B. and H.-J. Yuan. 1990. The statistical properties of dimension calculations using small data sets. Nonlinearity 3: 155–176.

    Yuan H.-J. , 'The statistical properties of dimension calculations using small data sets ' (1990 ) 3 Nonlinearity : 155 -176 .

    • Search Google Scholar
  • Schroeder, M.R. 1991. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. Freeman, New York.

    Schroeder M.R. , '', in Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise , (1991 ) -.

  • Seuront, L. 2010. Fractals and Multifractals in Ecology and Aquatic Science. CRC Press, Boca Raton.

    Seuront L. , '', in Fractals and Multifractals in Ecology and Aquatic Science , (2010 ) -.

  • Sun, W., G. Xu, P. Gong and S. Liang. 2006. Fractal analysis of remotely sensed images: a review of methods and applications. Int. J. Remote Sens. 27: 4963–4990.

    Liang S. , 'Fractal analysis of remotely sensed images: a review of methods and applications ' (2006 ) 27 Int. J. Remote Sens. : 4963 -4990 .

    • Search Google Scholar
  • Taylor, C.C. and S.J. Taylor. 1991. Estimating the dimension of a fractal. J. Royal Stat. Soc. B 53: 353–364.

    Taylor S.J. , 'Estimating the dimension of a fractal ' (1991 ) 53 J. Royal Stat. Soc. B : 353 -364 .

    • Search Google Scholar
  • Theiler, J. 1990. Estimating fractal dimension. J. Opt. Soc. Amer. A 7: 1055–1073.

    Theiler J. , 'Estimating fractal dimension ' (1990 ) 7 J. Opt. Soc. Amer. A : 1055 -1073 .

    • Search Google Scholar
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)