Over the past several decades, fractal geometry has found widespread application in the theoretical and experimental sciences to describe the patterns and processes of nature. The defining features of a fractal object (or process) are self-similarity and scale-invariance; that is, the same pattern of complexity is present regardless of scale. These features imply that fractal objects have an infinite level of detail, and therefore require an infinite sample size for their proper characterization. In practice, operational algorithms for measuring the fractal dimension D of natural objects necessarily utilize a finite sample size of points (or equivalently, finite resolution of a path, boundary trace or other image). This gives rise to a paradox in empirical dimension estimation: the object whose fractal dimension is to be estimated must first be approximated as a finite sample in Euclidean embedding space (e.g., points on a plane). This finite sample is then used to obtain an approximation of the true (but unknown) fractal dimension. While many researchers have recognized the problem of estimating fractal dimension from a finite sample, none have addressed the theoretical relationship between sample size and the reliability of dimension estimates based on box counting. In this paper, a theoretical probability-based model is developed to examine this relationship. Using the model, it is demonstrated that very large sample sizes — typically, one to many orders of magnitude greater than those used in most empirical studies — are required for reliable dimension estimation. The required sample size increases exponentially with D, and a 10D increase in sampling effort is required for each decadal (order of magnitude) increase in the scaling range over which dimension is reliably estimated. It is also shown that dimension estimates are unreliable for box counts exceeding one-tenth the sample size.
Agterberg, F.P. 2013. Fractals and spatial statistics of point patterns. J. Earth Sci. 24: 1–11.
Agterberg F.P. , 'Fractals and spatial statistics of point patterns ' (2013 ) 24 J. Earth Sci. : 1 -11 .
Avnir, D., O. Biham, D. Lidar and O. Malcai. 1998. Is the geometry of nature fractal? Science 279: 39–40.
Malcai O. , 'Is the geometry of nature fractal ' (1998 ) 279 Science : 39 -40 .
Bernston, G.M. and P. Stoll. 1997. Correcting for finite spatial scales of self-similarity when calculating the fractal dimensions of real-world structures. Proc. Royal Soc. London B 264: 1531–1537.
Stoll P. , 'Correcting for finite spatial scales of self-similarity when calculating the fractal dimensions of real-world structures ' (1997 ) 264 Proc. Royal Soc. London B : 1531 -1537 .
Bez, N. and S. Bertrand. 2011. The duality of fractals: roughness and self-similarity. Theor. Ecol. 4: 371–383.
Bertrand S. , 'The duality of fractals: roughness and self-similarity ' (2011 ) 4 Theor. Ecol. : 371 -383 .
Brewer, J. and L. Di Girolamo. 2006. Limitations of fractal dimension estimation algorithms with implications for cloud studies. Atmos. Res. 82: 433–454.
Girolamo L. , 'Limitations of fractal dimension estimation algorithms with implications for cloud studies ' (2006 ) 82 Atmos. Res. : 433 -454 .
Buczkowski, S., P. Hildgen and L. Cartilier. 1998. Measurements of fractal dimension by box-counting: a critical analysis of data scatter. Physica A 252: 23–34.
Cartilier L. , 'Measurements of fractal dimension by box-counting: a critical analysis of data scatter ' (1998 ) 252 Physica A : 23 -34 .
Cheng, Q. and F.P. Agterberg. 1995. Multifractal modeling and spatial point processes. Math. Geol. 27: 831–845.
Agterberg F.P. , 'Multifractal modeling and spatial point processes ' (1995 ) 27 Math. Geol. : 831 -845 .
Ciccotti, M. and F. Mulargia. 2002. Pernicious effect of physical cutoffs in fractal analysis. Phys. Rev. E 65: 037201.
Mulargia F. , 'Pernicious effect of physical cutoffs in fractal analysis ' (2002 ) 65 Phys. Rev. E : 037201 -.
Falconer, K.J. 2003. Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester.
Falconer K.J. , '', in Fractal Geometry: Mathematical Foundations and Applications , (2003 ) -.
Falconer, K.J. 2013. Fractals: A Very Short Introduction. Oxford Univ. Press, Oxford.
Falconer K.J. , '', in Fractals: A Very Short Introduction , (2013 ) -.
Foroutan-pour, K., P. Dutilleul and D.L. Smith. 1999. Advances in the implementation of the box-counting method of fractal dimension estimation. Appl. Math. Comput. 105: 195–210.
Smith D.L. , 'Advances in the implementation of the box-counting method of fractal dimension estimation ' (1999 ) 105 Appl. Math. Comput. : 195 -210 .
Gneiting, T., H. Sevcikova and D.B. Percival. 2012. Estimators of fractal dimension: assessing the roughness of time series and spatial data. Statist. Sci. 27: 247–277.
Percival D.B. , 'Estimators of fractal dimension: assessing the roughness of time series and spatial data ' (2012 ) 27 Statist. Sci. : 247 -277 .
Gonzato, G., F. Mulargia and W. Marzocchi. 1998. Practical application of fractal analysis: problems and solutions. Geophys. J. Int. 132: 275–282.
Marzocchi W. , 'Practical application of fractal analysis: problems and solutions ' (1998 ) 132 Geophys. J. Int. : 275 -282 .
Gonzato, G., F. Mulargia and M. Ciccotti. 2000. Measuring the fractal dimensions of ideal and actual objects: implications for application in geology and geophysics. Geophys. J. Int. 142: 108–116.
Ciccotti M. , 'Measuring the fractal dimensions of ideal and actual objects: implications for application in geology and geophysics ' (2000 ) 142 Geophys. J. Int. : 108 -116 .
Grassberger, P. and I. Procaccia. 1983. Characterization of strange attractors. Phys. Rev. Letters 50: 346–349.
Procaccia I. , 'Characterization of strange attractors ' (1983 ) 50 Phys. Rev. Letters : 346 -349 .
Hagen, C.A., N.C. Kenkel, D.J. Walker, R.K. Baydack and C.E. Braun. 2001. Fractal-based spatial analysis of radio telemetry data. In: Millspaugh, J.J., J.M. Marzluff and R. Kneward (eds.), Radio Tracking and Animal Populations. Academic Press, San Diego. pp. 167–187.
Braun C.E. , '', in Radio Tracking and Animal Populations , (2001 ) -.
Hall, P. 1995. On the effect of measuring a self-similar process. SIAM J. Appl. Math. 55: 800–808.
Hall P. , 'On the effect of measuring a self-similar process ' (1995 ) 55 SIAM J. Appl. Math. : 800 -808 .
Halley, J.M., S. Harley, A.S. Kallimanis, W.E. Kunin, J.J. Lennon and P. Sgardelis. 2004. Uses and abuses of fractal methodology in ecology. Ecol. Letters 7: 254–271.
Sgardelis P. , 'Uses and abuses of fractal methodology in ecology ' (2004 ) 7 Ecol. Letters : 254 -271 .
Hamburger, D., O. Biham and D. Avnir. 1996. Apparent fractality emerging from models of random distributions. Phys. Rev. E 53: 3342–3358.
Avnir D. , 'Apparent fractality emerging from models of random distributions ' (1996 ) 53 Phys. Rev. E : 3342 -3358 .
Huang, Q., J.R. Lorch and R.C. Dubes. 1994. Can the fractal dimension of images be measured? Pattern Recog. 27: 339–349.
Dubes R.C. , 'Can the fractal dimension of images be measured ' (1994 ) 27 Pattern Recog. : 339 -349 .
Kallimanis, A.S., S.P. Sgardelis and J.M. Halley. 2002. Accuracy of fractal dimension estimates for small samples of ecological distributions. Land. Ecol. 17: 281–297.
Halley J.M. , 'Accuracy of fractal dimension estimates for small samples of ecological distributions ' (2002 ) 17 Land. Ecol. : 281 -297 .
Kenkel, N.C. and D.J. Walker. 1996. Fractals in the biological sciences. Coenoses 11: 77–100.
Walker D.J. , 'Fractals in the biological sciences ' (1996 ) 11 Coenoses : 77 -100 .
Kiselev, V.G., K.R. Hahn and D.P. Auer. 2003. Is the brain cortex a fractal? NeuroImage 20: 1765–1774.
Auer D.P. , 'Is the brain cortex a fractal ' (2003 ) 20 NeuroImage : 1765 -1774 .
Liebovitch, L.S. and T. Toth. 1989. A fast algorithm to determine fractal dimensions by box counting. Phys. Letters A 141: 386–390.
Toth T. , 'A fast algorithm to determine fractal dimensions by box counting ' (1989 ) 141 Phys. Letters A : 386 -390 .
Lopes, R. and N. Betrouni. 2009. Fractal and multifractal analysis: a review. Med. Image Anal. 13: 634–649.
Betrouni N. , 'Fractal and multifractal analysis: a review ' (2009 ) 13 Med. Image Anal. : 634 -649 .
Malcai, O., D.A. Lidar and O. Biham. 1997. Scaling range and cut-offs in empirical fractals. Phys. Rev. E 56: 2817–2828.
Biham O. , 'Scaling range and cut-offs in empirical fractals ' (1997 ) 56 Phys. Rev. E : 2817 -2828 .
Mandelbrot, B. 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156: 636–638.
Mandelbrot B. , 'How long is the coast of Britain? Statistical self-similarity and fractional dimension ' (1967 ) 156 Science : 636 -638 .
Nams, V. 2006. Improving accuracy and precision in estimating fractal dimensions of animal movement paths. Acta Biotheor. 54: 1–11.
Nams V. , 'Improving accuracy and precision in estimating fractal dimensions of animal movement paths ' (2006 ) 54 Acta Biotheor. : 1 -11 .
Ogata, Y. and K. Katsura. 1991. Maximum likelihood estimates of the fractal dimension for random spatial patterns. Biometrika 78: 463–474.
Katsura K. , 'Maximum likelihood estimates of the fractal dimension for random spatial patterns ' (1991 ) 78 Biometrika : 463 -474 .
Panico, J. and P. Sterling. 1995. Retinal neurons and vessels are not fractal but space-filling. J. Compar. Neurol. 361: 479–490.
Sterling P. , 'Retinal neurons and vessels are not fractal but space-filling ' (1995 ) 361 J. Compar. Neurol. : 479 -490 .
Pérez-Rodríguez, L., R. Jovani and F. Mougeot. 2013. Fractal geometry of a complex plumage trait reveals bird’s quality. Proc. Royal Soc. B 280: 20122783.
Mougeot F. , 'Fractal geometry of a complex plumage trait reveals bird’s quality ' (2013 ) 280 Proc. Royal Soc. B : 20122783 -.
Pruess, S.A. 1995. Some remarks on the numerical estimation of fractal dimension. In: Barton, C.C. and P.R. La Pointe (eds.), Fractals in the Earth Sciences. Plenum, New York. pp. 65–75.
Pruess S.A. , '', in Fractals in the Earth Sciences , (1995 ) -.
Ramsey, J.B. and H.-J. Yuan. 1990. The statistical properties of dimension calculations using small data sets. Nonlinearity 3: 155–176.
Yuan H.-J. , 'The statistical properties of dimension calculations using small data sets ' (1990 ) 3 Nonlinearity : 155 -176 .
Schroeder, M.R. 1991. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. Freeman, New York.
Schroeder M.R. , '', in Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise , (1991 ) -.
Seuront, L. 2010. Fractals and Multifractals in Ecology and Aquatic Science. CRC Press, Boca Raton.
Seuront L. , '', in Fractals and Multifractals in Ecology and Aquatic Science , (2010 ) -.
Sun, W., G. Xu, P. Gong and S. Liang. 2006. Fractal analysis of remotely sensed images: a review of methods and applications. Int. J. Remote Sens. 27: 4963–4990.
Liang S. , 'Fractal analysis of remotely sensed images: a review of methods and applications ' (2006 ) 27 Int. J. Remote Sens. : 4963 -4990 .
Taylor, C.C. and S.J. Taylor. 1991. Estimating the dimension of a fractal. J. Royal Stat. Soc. B 53: 353–364.
Taylor S.J. , 'Estimating the dimension of a fractal ' (1991 ) 53 J. Royal Stat. Soc. B : 353 -364 .
Theiler, J. 1990. Estimating fractal dimension. J. Opt. Soc. Amer. A 7: 1055–1073.
Theiler J. , 'Estimating fractal dimension ' (1990 ) 7 J. Opt. Soc. Amer. A : 1055 -1073 .