View More View Less
  • 1 Fondazione Edmund Mach, Research and Innovation Centre Department of Biodiversity and Molecular Ecology, GIS and Remote Sensing Unit Via E. Mach 1 38010 S. Michele all’Adige (TN) Italy
  • | 2 Oklahoma State University Department of Botany Stillwater OK 74078 USA
Restricted access

Due to the difficulties of field-based species data collection at wide spatial scales, remotely sensed spectral diversity has been advocated as one of the most effective proxies of ecosystem and species diversity. It is widely accepted that the relationship between species and spectral diversity is scale dependent. However, few studies have evaluated the impacts of scale on species diversity estimates from remote sensing data. In this paper we tested the species versus spectral relationship over very large scales (extents) with a varying spatial grain using floristic data of North America. Spectral diversity explained a low amount of variance while spatial extent of the sampling units (floras) explained a high amount of variance based on results from our variance partitioning analyses. This leads to the conclusion that spectral diversity must be carefully related to species diversity, explicitly taking into account potential area effects.

Supplementary Materials

    • Supplementary Material

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)