View More View Less
  • 1 University of Freiburg Chair of Site Classification and Vegetation Science, Faculty of Environment and Natural Resources D-79085 Freiburg Germany
  • | 2 Universidad Austral de Chile Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Silvicultura Valdivia Chile
Restricted access

Today, native vegetation in the Valdivian Coastal Range (VCR) is restricted to areas where small-scale land use dominates resulting in a vegetation mosaic. This study (1) provides a description of the vegetation types (VT) within the vegetation mosaic, (2) identifies land use drivers that lead to either degradation or recovery processes and, (3) attempts to provide an explanation for the vegetation mosaic with a conceptual model. In two regions of the VCR we sampled 102 plots for composition of vegetation and indicators of livestock browsing, timber cutting and coppice forestry. We classified the vegetation using a flexible beta method and Bray-Curtis distance. Diagnostic species were identified by an extended indicator species analysis. The clustering results were visualized in NMDS and recursive partitioning was used to explain variations in the VTs as a function of the land use variables. Differentiating effects were tested using PERMANOVA and a conceptual model for the vegetation dynamics was developed from the results. Four VTs such as (1) extensively grazed non-native grasslands (EGN); (2), closed and semi-closed grazed Ugni and Berberis shrublands; (3) severely impacted evergreen forests; and (4) sparsely disturbed evergreen forests were recognized. The browsing indicators were important for differentiating the VTs. The EGN grasslands were differentiated by having more than 0.075 dung piles/m2. Areas with fewer dung piles but direct browsing effects had the greatest impact on vegetation. Forests were preserved when the mean browsing index was equal to or lower than 0.5. The cutting frequency was significant in determining overall floristic composition. We showed that shrublands and evergreen forests within the vegetation mosaic and the result of small-scale farming led to high native forest species richness. This makes the vegetation mosaic especially valuable in a landscape dominated by exotic tree monocultures.

Supplementary Materials

    • Supplementary Material

Click HERE for submission guidelines.

Manuscript submission: COMEC Manuscript Submission


Senior editors

Editor(s)-in-Chief: Podani, János

Editor(s)-in-Chief: Jordán, Ferenc

Honorary Editor(s): Orlóci, László

Editorial Board

  • Madhur Anand, CAN (forest ecology, computational ecology, and ecological complexity)
  • S. Bagella, ITA (temporal dynamics, including succession, community level patterns of species richness and diversity, experimental studies of plant, animal and microbial communities, plant communities of the Mediterranean)
  • P. Batáry, HUN (landscape ecology, agroecology, ecosystem services)
  • P. A. V. Borges, PRT (community level patterns of species richness and diversity, sampling in theory and practice)
  • A. Davis, GER (supervised learning, multitrophic interactions, food webs, multivariate analysis, ecological statistics, experimental design, fractals, parasitoids, species diversity, community assembly, ticks, biodiversity, climate change, biological networks, cranes, olfactometry, evolution)
  • Z. Elek, HUN (insect ecology, invertebrate conservation, population dynamics, especially of long-term field studies, insect sampling)
  • T. Kalapos, HUN (community level plant ecophysiology, grassland ecology, vegetation-soil relationship)
  • G. M. Kovács, HUN (microbial ecology, plant-fungus interactions, mycorrhizas)
  • W. C. Liu,TWN (community-based ecological theory and modelling issues, temporal dynamics, including succession, trophic interactions, competition, species response to the environment)
  • L. Mucina, AUS (vegetation survey, syntaxonomy, evolutionary community ecology, assembly rules, global vegetation patterns, mediterranean ecology)
  • P. Ódor, HUN (plant communities, bryophyte ecology, numerical methods)
  • F. Rigal, FRA (island biogeography, macroecology, functional diversity, arthropod ecology)
  • D. Rocchini, ITA (biodiversity, multiple scales, spatial scales, species distribution, spatial ecology, remote sensing, ecological informatics, computational ecology)
  • F. Samu, HUN (landscape ecology, biological control, generalist predators, spiders, arthropods, conservation biology, sampling methods)
  • U. Scharler, ZAF (ecological networks, food webs, estuaries, marine, mangroves, stoichiometry, temperate, subtropical)
  • D. Schmera, HUN (aquatic communities, functional diversity, ecological theory)
  • M. Scotti, GER (community-based ecological theory and modelling issues, trophic interactions, competition, species response to the environment, ecological networks)
  • B. Tóthmérész, HUN (biodiversity, soil zoology, spatial models, macroecology, ecological modeling)
  • S. Wollrab, GER (aquatic ecology, food web dynamics, plankton ecology, predator-prey interactions)


Advisory Board

  • S. Bartha, HUN
  • S.L. Collins, USA
  • T. Czárán, HUN
  • E. Feoli, ITA
  • N. Kenkel, CAN
  • J. Lepš, CZE
  • S. Mazzoleni, ITA
  • Cs. Moskát, HUN
  • B. Oborny, HUN
  • M.W. Palmer, USA
  • G.P. Patil, USA
  • V. de Patta Pillar, BRA
  • C. Ricotta, ITA
  • Á. Szentesi, HUN



Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Biology & Environmental Sciences
  • Elsevier/Geo Abstracts
  • Science Citation Index Expanded
  • Zoological Abstracts



Community Ecology
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)