Alpha, beta, and gamma diversity are three fundamental biodiversity components in ecology, but most studies focus only on the scale issues of the alpha or gamma diversity component. The beta diversity component, which incorporates both alpha and gamma diversity components, is ideal for studying scale issues of diversity. We explore the scale dependency of beta diversity and scale relationship, both theoretically as well as by application to actual data sets. Our results showed that a power law exists for beta diversity-area (spatial grain or spatial extent) relationships, and that the parameters of the power law are dependent on the grain and extent for which the data are defined. Coarse grain size generates a steeper slope (scaling exponent z) with lower values of intercept (c), while a larger extent results in a reverse trend in both parameters. We also found that, for a given grain (with varying extent) or a given extent (with varying grain) the two parameters are themselves related by power laws. These findings are important because they are the first to simultaneously relate the various components of scale and diversity in a unified manner.