Authors:
J. Alahuhta University of Oulu, P.O. Box 3000, FI-90014 University of Oulu, Finland

Search for other papers by J. Alahuhta in
Current site
Google Scholar
PubMed
Close
,
J. Rääpysjärvi Freshwater Centre, FI-90014 University of Oulu, Finland

Search for other papers by J. Rääpysjärvi in
Current site
Google Scholar
PubMed
Close
,
S. Hellsten Freshwater Centre, FI-90014 University of Oulu, Finland

Search for other papers by S. Hellsten in
Current site
Google Scholar
PubMed
Close
,
M. Kuoppala Freshwater Centre, FI-90014 University of Oulu, Finland

Search for other papers by M. Kuoppala in
Current site
Google Scholar
PubMed
Close
, and
J. Aroviita Freshwater Centre, FI-90014 University of Oulu, Finland

Search for other papers by J. Aroviita in
Current site
Google Scholar
PubMed
Close
Restricted access

Metacommunity paradigms are increasingly studied to explain how environmental control and spatial patterns determine variation in community composition. However, the relative importance of these patterns on biological assemblages among different habitats is not well known. We investigated the relative roles of local, catchment and spatial variables based on overland and watercourse distances in explaining the variation of community structure of lake and river macrophytes in two large river basins at two spatial extents (within and across river basins). Partial redundancy analysis was used to explore the share of variability in macrophyte communities attributable to local environmental conditions, catchment land cover and space (generated with Principle Coordinates of Neighbour Matrices). We found that local variables had the highest effect on both lake and river macrophyte communities, followed by catchment variables. Space had no or only marginal influence on the community structure regardless of used distance measure. Total phosphorus, conductivity and turbidity of the local variables contributed most for lake macrophytes, whereas pH and color had largest independent contribution for variation in river macrophytes. Size of catchment area and proportion of lakes and agriculture were the most important catchment variables in both habitats. The strong importance of environmental control suggests that both lake and river macrophyte communities are structured by species sorting. This finding gives support to the validity of assessment systems based on the European Water Framework Directive.

  • Alahuhta, J., K.-M. Vuori and M. Luoto. 2011. Land use, geomorphology and climate as environmental determinants of emergent aquatic macrophytes in boreal catchments. Boreal Environ.Res. 16: 185202.

    • Search Google Scholar
    • Export Citation
  • Alahuhta, J. and J. Heino. 2013. Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. J. Biogeogr. 40: 15721582.

    • Search Google Scholar
    • Export Citation
  • Alahuhta, J., A. Kanninen, S. Hellsten, K.-M. Vuori, M. Kuoppala and H. Hämäläinen. 2013. Environmental and spatial correlates of community composition, richness and status of boreal lake macrophytes. Ecol. Indic. 32: 172181.

    • Search Google Scholar
    • Export Citation
  • Alahuhta, J. 2015. Geographic patterns of lake macrophyte communities and species richness at regional scale. J. Veg. Sci., in press. DOI: 10.1111/jvs.12261.

    • Search Google Scholar
    • Export Citation
  • Alahuhta, J., A. Kanninen, S. Hellsten, K.-M. Vuori, M. Kuoppala and H. Hämäläinen. 2014a. Variable response of functional macrophyte groups to lake characteristics, land use and space: implications for bioassessment. Hydrobiologia 737: 201214.

    • Search Google Scholar
    • Export Citation
  • Alahuhta, J., L.B. Johnson, J. Olker and J. Heino. 2014b. Species sorting determines variation in the community composition of common and rare macrophytes at various spatial extents. Ecol. Complex. 20: 6168.

    • Search Google Scholar
    • Export Citation
  • Anonymous 2003. SFS-EN 14184 2003. Water quality. Guideline for studying macrophytes in running waters. Finnish Standards Association SFS, Helsinki.

    • Search Google Scholar
    • Export Citation
  • Beisner, B.E., P.R. Peres-Neto, E.S. Lindström, A. Barnett and M.L. Longhi. 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 29852991.

    • Search Google Scholar
    • Export Citation
  • Bennett, J.R., B.F. Cumming, B.K. Ginn and J.P. Smol. 2010. Broad-scale environmental responses and niche conservatism in lacustrine diatom communities. Global Ecol. Biogeogr. 19: 724732.

    • Search Google Scholar
    • Export Citation
  • Birk, S. and N. Willby. 2010. Towards harmonization of ecological quality classification: establishing common grounds in European macrophyte assessment for rivers. Hydrobiologia 652: 149163.

    • Search Google Scholar
    • Export Citation
  • Blanchet, F.G., P. Legendre and D. Borcard. 2008. Forward selection of explanatory variables. Ecography 89: 26232632.

  • Boedeltje, G., J. Bakker, A. Ten Brinke, J van Groenendael and M. Soesbergen. 2004. Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. J. Ecol. 92: 786796.

    • Search Google Scholar
    • Export Citation
  • Borcard, D., P. Legendre and P. Drapeau. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 10451055.

  • Borcard, D., F. Gillet and P. Legendre. 2011. Numerical Ecology with R. Springer, New York.

  • Bornette, G. and C. Amoros. 1991. Aquatic vegetation and hydrology of a braided river floodplain. J. Veg. Sci. 2: 497512.

  • Capers, R.S., R. Selsky and G.J. Bugbee. 2010. The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshw. Biol. 55: 952966.

    • Search Google Scholar
    • Export Citation
  • Chambers, P.A., P. Lacoul, K.J. Murphy and S.M. Thomaz. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiology 595: 926.

    • Search Google Scholar
    • Export Citation
  • Cottenie, K. 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8: 11751182.

  • Crump, B.C., H.E. Adams, J.E. Hobbie and G.W. Kling. 2007. Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology 88: 13651378.

    • Search Google Scholar
    • Export Citation
  • De Bie, T. , L. De Meester, L. Brendonck et al.2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 15: 740747.

    • Search Google Scholar
    • Export Citation
  • Dray, S., P. Legendre and P.R. Peres-Neto. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196: 483493.

    • Search Google Scholar
    • Export Citation
  • Dray, S., R. Pélissier, P. Couteron, M.J. Fortin, P. Legendre, P.R. Peres-Neto, E. Bellier, R. Bivand, F.G. Blanchet, M. De Caceres, A.B. Dufour, E. Heegaard, T. Jombart, F. Munoz, J. Oksanen, J. Thioulouse and H.H. Wagner. 2012. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82: 257275.

    • Search Google Scholar
    • Export Citation
  • Eronen, M. 2005. Land Uplift: Virgin Land from the Sea. In: Seppälä, M. (ed.), The Physical Geography of Fennoscandia. Oxford University Press, Oxford, pp. 1734.

    • Search Google Scholar
    • Export Citation
  • Grönroos, M., J. Heino, T. Siqueira, V.L. Landeiro, J. Kotanen and L.M. Bini 2013. Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecol. Evol. 3: 44734487.

    • Search Google Scholar
    • Export Citation
  • Heino, J. 2011. A macroecological perspective of diversity patterns in the freshwater realm. Freshw. Biol. 56: 17031722.

  • Heino, J., M. Grönroos, J. Soininen, R. Virtanen and T. Muotka. 2012. Context dependency and metacommunity structuring in boreal headwater streams. Oikos 121: 537544.

    • Search Google Scholar
    • Export Citation
  • Jacobson, N. and P.R. Peres-Neto. 2010. Quantifying and disentangling dispersal in metacommunities: how close have we come? How far is there to go? Landscape Ecol. 25: 495507.

    • Search Google Scholar
    • Export Citation
  • Johnson, R.K., W. Goedkoop and L. Sandin. 2004. Spatial scale and ecological relationships between the macroinvertebrate communities of stony habitats of streams and lakes. Freshw. Biol. 49: 117994.

    • Search Google Scholar
    • Export Citation
  • Kanninen, A., V.-M. Vallinkoski, J. Leka, T. J. Marjomäki, S. Hellsten and H. Hämäläinen. 2013. A comparison of two methods for surveying aquatic macrophyte communities in boreal lakes: implications for bioassessment. Aquatic Bot. 104: 88100.

    • Search Google Scholar
    • Export Citation
  • Lacoul, P. and B. Freedman. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 14: 89136.

  • Landeiro, V.L., W.E. Magnusson, A.S. Melo, H.M.V. Espirito-Santo and L.M. Bini. 2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshw. Biol. 56: 11841192.

    • Search Google Scholar
    • Export Citation
  • Legendre, P. and E.D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271280.

    • Search Google Scholar
    • Export Citation
  • Legendre, P., D. Borcard and P.R. Peres-Neto. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr. 75: 435450.

    • Search Google Scholar
    • Export Citation
  • Leibold, M.A., M. Holyoak, N. Mouquet, P. Amarasekare, J.M. Chase, M.F. Hoopes, R.D. Holt, J.B. Shurin, R. Law, D. Tilman, M. Loreau and A. Gonzalez. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7: 601613.

    • Search Google Scholar
    • Export Citation
  • Logue, J., N. Mouquet, H. Peter, H. Hillebrand and The Metacommunity Working Group. 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol. Evol. 26: 482491.

    • Search Google Scholar
    • Export Citation
  • Madsen, J.D., P.A. Chambers, J.F. James, E.W. Koch and D.F. Westlake. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 7184.

    • Search Google Scholar
    • Export Citation
  • Mikulyuk, A., Sharma, S., Van Egeren, S., Erdmann, E., Nault, M.E. and Hauxwell, J. 2011. The relative role of environmental, spatial, and land-use patterns in explaining aquatic macrophyte community composition. Can. J. Fish. Aquatic Sci. 68: 17781789.

    • Search Google Scholar
    • Export Citation
  • O’Hare, M.T. , I.D.M. Gunn, D.S. Chapman, B.J. Dudley and B.V. Purse. 2012. Impacts of space, local environment and habitat connectivity on macrophyte communities in conservation lakes. Divers. Distrib. 18: 603614.

    • Search Google Scholar
    • Export Citation
  • Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2012. vVegan: Community Ecology Package. R package version 2.0-3. Available at: http://CRAN.R-project.org/package=vegan.

    • Search Google Scholar
    • Export Citation
  • Padial, A.A., F. Ceschin, S.A.J. Declerck, L. De Meester, C.C. Bonecker, F.A. Lansac-Toha, L. Rodrigues, L.C. Rodrigues, S. Train, L.F.M. Velho and L.M. Bini. 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9: e111227.

    • Search Google Scholar
    • Export Citation
  • Peres-Neto, P.R., P. Legendre, S. Dray and D. Borcard. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 26142625.

    • Search Google Scholar
    • Export Citation
  • Presley, S.J., C.L. Higgins and M.R. Willig. 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119: 908917.

    • Search Google Scholar
    • Export Citation
  • Riis, T. 2008. Dispersal and colonisation of plants in lowland streams: success rates and bottlenecks. Hydrobiologia 596: 341351.

  • Rintanen, T. 1996. Changes in the flora and vegetation of 113 Finnish lakes during 40 years. Ann. Bot. Fenn. 33: 101122.

  • Robinson, C. T. and B. Kawecka. 2005. Benthic diatoms of an Alpine stream/lake network in Switzerland. Aquatic Sci. 67: 492506.

  • Santamaria, L. 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol. 23: 137154.

    • Search Google Scholar
    • Export Citation
  • Soininen, J. and J. Weckström. 2009. Diatom community structure along environmental and spatial gradients in lakes and streams. Fundamental Appl. Limnol. 173: 205213.

    • Search Google Scholar
    • Export Citation
  • Soons, M.B., C. van der Vlugt, B. van Lith, G.W. Heil and M. Klaassen. 2008. Small seed size increases the potential for dispersal of wetland plants by ducks. J. Ecol. 96: 619627.

    • Search Google Scholar
    • Export Citation
  • Toivonen H. and P. Huttunen. 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquatic Bot. 51: 197221.

    • Search Google Scholar
    • Export Citation
  • Van Geest, G.J. , F.C.J.M. Roozen, H. Coops, R.M.M. Roijackers, A.D. Buijse, E.T.H.M. Peeters and M. Scheffer. 2003. Vegetation abundance in lowland flood plan lakes determined by surface area, age and connectivity. Freshw. Biol. 48: 440454.

    • Search Google Scholar
    • Export Citation
  • Viana, D.S., L. Santamaria, T.C. Michot and J. Figuerola. 2013. Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms. Ecography 36: 430438.

    • Search Google Scholar
    • Export Citation
  • Wetzel, R.G. 2001. Limnology, Lake and River Ecosystems. 3rd ed. Academic Press, New York.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)