The present study uses transition matrices to compare successional processes (colonization, disturbance, persistence and replacement) of fouling communities submitted to different light effects on Cabo Frio Island, a seasonal upwelling region. Twelve functional groups were identified, and differences in the transition probabilities shown by the matrices suggest a preference for the replacement property of functional groups, which indicates the facilitation successional mechanism. The probability of colonization of these groups differed according to the direction of the substrate, which caused a negative effect of light reduction on algae with a greater probability of disturbance (sensu species replacement), which is typical of a more stressful environment. Species of the same functional group replace each other through competition and herbivory, which promotes the distinction between earlier and later groups on the successional process. Successional trajectories evaluated through global transition matrices change at each time step because they depend on the species turnover rate, and therefore, they are informative of the changing processes of the community. The probabilistic rate of changes related to successional processes may be used to evaluate future conditions of fouling communities, and the deterministic components and stochastic elements will render these communities self-organizable.
Ank, G., T.F. Porto, R.C. Pereira and B.A.P. da Gama. 2009. Effects of different biotic substrata on mussel attachment. Biofouling 25: 173–180.
Breitburg, D.L. 1985. Development of a subtidal epibenthic community: factors affecting species composition and the mechanisms of succession. Oecologia 65: 173–184.
Caswell, H. 2001. Matrix Population Models: Construction, Analysis and Interpretation. 2nd edition. Sinauer Associates, Massachusetts.
Ceccarelli, D.M. G.P. Jones and L.J. McCook. 2011. Interactions between herbivorous fish guilds and their influence on algal succession on a coastal coral reef. J. Exp. Mar. Biol. Ecol. 399: 60–67.
Clements F.E. 1916. Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institution of Washington, Washington.
Coma, R., M. Ribes, J. Gili and M. Zabala. 2000. Seasonality in coastal benthic ecosystems. Trends Ecol. Evol. 15: 448–453.
Connell J.H. and R.O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111: 1119–1144.
Dean T.A. and L.E. Hurd. 1980. Development in an estuarine fouling community: the influence of early colonists on later arrivals. Oecologia 46: 295–301.
De Messano L.V.R. , L. Sathler, L.Y. Reznik and R. Coutinho. 2009. The effect of biofouling on localized corrosion of the stainless steels N08904 and UNS S32760. Int. Biodeter. Biodegr. 63: 607–614.
Ferreira D.E.L. , A.C. Peret and R. Coutinho. 1998. Seasonal grazing rates and food processing by tropical fish. J. Fish Biol. 53: 222–235.
Ferreira C.E.L. , J.E.A. Gonçalves and R. Coutinho. 2001. Community structure of fishes and habitat complexity in a tropical rocky shore. Environ. Biol. Fish 61: 353–369.
Ferreira C.E.L. , S.R. Floeter, J.L. Gasparini, B.P. Ferreira and J.C. Joyeux. 2004. Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. J. Biogeogr. 31: 1093–1106.
Figueiredo M.A.O. , M.B.B. Barreto and R.P. Reis. 2004. Caracterização das macroalgas nas comunidades marinhas da Área de Proteção Ambiental de Cairuçú, Parati, RJ – subsídios para futuros monitoramentos. Rev. Bras. Bot. 27: 11–17.
Geierman C. and R. Emlet. 2009. Feeding behavior, cirral fan anatomy, Reynolds numbers, and leakiness of Balanus glandula, from post-metamorphic juvenile to the adult. J. Exp. Mar. Biol. Ecol. 379: 68–76.
Giordano F. 2001. Colonização de placas de fouling no estuário de Santos (Santos-SP): análise transicional e de sensibilidade complementando a abordagem baseada em recobrimentos específicos e diversidade. PhD Thesis, University of São Paulo, São Paulo, Brazil.
Glasby T.M. 1999. Effects of shading on subtidal epibiotic assemblages. J. Exp. Mar. Biol. Ecol. 234: 275–290.
Glasby T.M. 2000. Surface composition and orientation interact to affect subtidal epibiota. J. Exp. Mar. Biol. Ecol. 248: 177–190.
Gotelli N.J. 2009. A Primer of Ecology. 4th edition. Sinauer Associates, Massachussets.
Greene, C.H., A. Schoener and E. Corets. 1983. Succession on marine hard substrata: the adaptive significance of solitary and colonial strategies in temperate fouling communities. Mar. Ecol. Prog. Ser. 13: 121–129
Grohmann P.A. 2009. Hydroids (Cnidaria, Hydrozoa) of the intertidal zone of Governador and Paquetá Islands, Guanabara Bay, Rio de Janeiro, Brazil. Iheringia (Zoology) 99: 291–294.
Guimaraens, M.A., A.M. Paiva and R. Coutinho. 2005. Modeling Ulva spp. dynamics in a tropical upwelling region. Ecol. Model. 188: 448–460.
Hill, M.F., J.D. Witman and H. Caswell. 2004. Markov chain analysis of succession in a rocky subtidal community. Am. Nat. 164: 46–61.
Irving, A.D., and S.D. Connell . 2002. Sedimentation and light penetration interact to maintain heterogeneity of subtidal habitats: algal versus invertebrate dominated assemblages. Mar. Ecol. Prog. Ser. 245: 8–91.
ITIS (Integrated Taxonomic Information System). 2009. (available from: http://www.itis.usda.gov).
Kohler K. and S. Gill. 2006. Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32: 1259–1269.
Krohling W. , D.S. Brotto and I.R. Zalmon. 2006. Functional role of fouling community on an artificial reef at the northern coast of Rio de Janeiro state, Braz. J. Oceanogr. 54: 183–191.
López M.S. and R. Coutinho. 2008. Acoplamento Plâncton-Bentos: o papel do suprimento larval na estrutura das comunidades bentônicas de costões rochosos. Oecologia Brasil. 12: 575–601.
Mahiques M.M. , M.C. Bícego, I.C.A. Silveira, S.H.M. Sousa, R.A. Lourenço and M.M. Fukumoto. 2005. Modern sedimentation in the Cabo Frio upwelling system, Southeastern Brazilian shelf. An. Acad. Bras. Ciênc. 77: 535–548.
Margalef, R. 1991. Teoría de los Sistemas Ecológicos. Universidad de Barcelona Editora, Barcelona.
Masi B.P. 2012. A influência de características oceanográficas na trajetória sucessional das incrustações biológicas na região de ressurgência de Cabo Frio, Rio de Janeiro. PhD Thesis, Ecology, University of North Rio de Janeiro State, Campos dos Goytacazes, Brazil.
Maughan B.C. 2001. The effects of sedimentation and light on recruitment and development of a temperate, subtidal, epifaunal community. J. Exp. Mar. Biol. Ecol. 256: 59–71.
Menge, B.A., G.W. Allisonb, C.A. Blanchettec, T.M. Farrelld, A.M. Olsona, T.A. Turnere and P.V. Tamelenf. 2005. Stasis or kinesis? Hidden dynamics of a rocky intertidal macrophyte mosaic revealed by a spatially explicit approach. J. Exp. Mar. Biol. Ecol. 314: 3–39.
Pawlowski, C. and C.A. McCord. 2009. Markov model for assessing ecological stability successional processes. Ecol. Model. 220: 86–95.
Platt W.J. and J.H. Connell. 2003. Natural disturbances and directional replacement of species. Ecol. Monogr. 73: 507–522.
Prach K. and L.R. Walker. 2011. Four opportunities for studies of ecological succession. Trends Ecol. Evol. 26: 119–123.
Phillips J.C. , G.A. Kendrick and P.S. Lavery. 1997. A test of a functional group approach to detecting shifts in macrolgal communities along a disturbance gradient. Mar. Ecol. Prog. Ser. 153: 125–138.
Sauer-Machado K.R.S. 2006. Estudo sucessional das incrustações biológicas em painéis artificiais na Ilha de Porto Belo (Porto Belo, SC), através da análise de matrizes de probabilidade de transição e análise de sensibilidade. PhD Thesis, Federal University of Rio de Janeiro, Brazil.
Sebens K. 1986. Spatial relationships among encrusting marine organisms in the New England subtidal zone. Ecol. Monogr. 56: 73–96.
Steneck, R.S. and M.N. Dethier. 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69: 476–498.
Sutherland J.P. 1978. Functional roles of Schizoporella and Styela in the fouling community at Beaufort, North Carolina. Ecology 59: 257–264.
Sutherland J.P. and R.H. Karlson. 1977. Development and stability of the fouling community at Beaufort, North Carolina. Ecol. Monogr. 47: 425–446.
Svane I.B. and C.M. Young. 1989. The ecology and behavior of ascidian larvae. Oceanogr. Mar. Biol. An. Rev. 27: 45–90
Tanner J.E. , T.P. Hughes and J.H. Connell. 1994. Community-level density dependence: an example from a shallow coral assemblage. Ecology 90: 506–516.
Underwood A.J. 1999. History and recruitment in structure of intertidal assemblages on rocky shores: an introduction to problems for interpretation of natural change. In: M. Whitfield, J. Matthews and C. Reynolds (eds.), Aquatic Life Cycle Strategies: Survival in a Variable Environment. Marine Biological Association of the United Kingdom, Plymouth. pp. 79–96.
Usher M.B. 1979. Markovian approaches to ecological succession. J. Anim. Ecol. 48: 413–426.
Valentin J. 1987. Spatial structure of the zooplankton community in the Cabo Frio region (Brazil) influenced by coastal upwelling. Hydrobiologia 113: 183–199.
Wootton J.T. 2001. Prediction in complex communities: analysis of empirically derived Markov models. Ecology 82: 580–598.
Xavier E.D.A. , B.A.P. da Gama, T.F. Porto, B.L. Antunes and R.C. Pereira. 2008. Effects of disturbance area on fouling communities from a tropical environment: Guanabara Bay, Rio de Janeiro, Brazil. Braz. J. Oceanogr. 56: 73–84.