Authors:
C. Ricotta University of Rome ‘La Sapienza’, Rome, Italy

Search for other papers by C. Ricotta in
Current site
Google Scholar
PubMed
Close
,
E. Ari Eötvös University, Budapest, Hungary

Search for other papers by E. Ari in
Current site
Google Scholar
PubMed
Close
,
G. Bonanomi University of Naples ‘Federico II’, Portici, Italy

Search for other papers by G. Bonanomi in
Current site
Google Scholar
PubMed
Close
,
F. Giannino University of Naples ‘Federico II’, Portici, Italy

Search for other papers by F. Giannino in
Current site
Google Scholar
PubMed
Close
,
D. Heathfield World in a Box, Karkkila, Finland

Search for other papers by D. Heathfield in
Current site
Google Scholar
PubMed
Close
,
S. Mazzoleni University of Naples ‘Federico II’, Portici, Italy

Search for other papers by S. Mazzoleni in
Current site
Google Scholar
PubMed
Close
, and
J. Podani Eötvös University, Budapest, Hungary
Ecology Research Group of the Hungarian Academy of Sciences, Budapest, Hungary

Search for other papers by J. Podani in
Current site
Google Scholar
PubMed
Close
Restricted access

The increasing availability of phylogenetic information facilitates the use of evolutionary methods in community ecology to reveal the importance of evolution in the species assembly process. However, while several methods have been applied to a wide range of communities across different spatial scales with the purpose of detecting non-random phylogenetic patterns, the spatial aspects of phylogenetic community structure have received far less attention. Accordingly, the question for this study is: can point pattern analysis be used for revealing the phylogenetic structure of multi-species assemblages? We introduce a new individual-centered procedure for analyzing the scale-dependent phylogenetic structure of multi-species point patterns based on digitized field data. The method uses nested circular plots with increasing radii drawn around each individual plant and calculates the mean phylogenetic distance between the focal individual and all individuals located in the circular ring delimited by two successive radii. This scale-dependent value is then averaged over all individuals of the same species and the observed mean is compared to a null expectation with permutation procedures. The method detects particular radius values at which the point pattern of a single species exhibits maximum deviation from the expectation towards either phylogenetic aggregation or segregation. Its performance is illustrated using data from a grassland community in Hungary and simulated point patterns. The proposed method can be extended to virtually any distance function for species pairs, such as functional distances.

  • Anacker, B.L., Klironomos, J.N., Maherali, H., Reinhart, K.O. and Strauss S.Y. 2014. Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol. Lett. 17: 16131621.

    • Search Google Scholar
    • Export Citation
  • Bagchi, R., Swinfield, S., Gallery, R.E., Lewis, O.T., Gripenberg, S., Narayan, L. and Freckleton R.P. 2010. Testing the Janzen—Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree. Ecol. Lett. 13: 12621269.

    • Search Google Scholar
    • Export Citation
  • Bever, J.D. 1994. Feedback between plants and their soil communities in an old field community. Ecology 75: 19651977.

  • Bever, J.D., Westover, M. and Antonovics, J. 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. 85: 561573.

    • Search Google Scholar
    • Export Citation
  • Bonanomi, G., Antignani, V., Capodilupo, M. and Scala, F. 2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol. Biochem. 42: 136144.

    • Search Google Scholar
    • Export Citation
  • Bonanomi, G., Giannino, F. and Mazzoleni, S. 2005. Negative plant—soil feedback and species coexistence. Oikos 111: 311321.

  • Cadotte, M.W., Davies, T.J., Regetz, J., Kembel, S.W., Cleland, E. and Oakley, T.H. 2010. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13: 96105.

    • Search Google Scholar
    • Export Citation
  • Cavender-Bares, J., Kozak, K.H., Fine, P.V.A. and Kembel, S.W. 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12: 693715.

    • Search Google Scholar
    • Export Citation
  • Chave, J., Muller-Landau, H.C. and Levin, S.A. 2002. Comparing classical community models: Theoretical consequences for patterns of diversity. Amer. Nat. 159: 123.

    • Search Google Scholar
    • Export Citation
  • Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31: 343366.

  • Coley, P.D. and Barone, J.A. 1996. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Evol. Syst. 27: 305335.

  • Comita, L.S., Muller-Landau, H.C., Aguilar, S. and Hubbell S.P. 2010. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329: 330332.

    • Search Google Scholar
    • Export Citation
  • Connell, J.H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer, P.J. and Gradwell, G.R. (eds.), Dynamics of Populations. Center for Agricultural Publishing and Documentation, Wageningen, NL. pp. 298312.

    • Search Google Scholar
    • Export Citation
  • Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W. and Mouquet, N. 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13: 10301040.

    • Search Google Scholar
    • Export Citation
  • Diggle, P.J. 2003. Statistical Analysis of Spatial Point Patterns. Arnold, London.

  • Felsenstein, J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genetics, University of Washington, Seattle.

  • Ferrier, S., Manion, G., Elith, J. and Richardson K. 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13: 252264.

    • Search Google Scholar
    • Export Citation
  • Fuller, M.M. and Enquist, B.J. 2012. Accounting for spatial autocorrelation in null models of tree species association. Ecography 35: 510518.

    • Search Google Scholar
    • Export Citation
  • Gilbert, G.S. and Webb, C.O. 2007. Phylogenetic signal in plant pathogen—host range. PNAS USA 104: 49794983.

  • Gonzalez, M.A., Roger, A., Courtois, E.A., Jabot, F., Norden, N., Paine, C.E.T., Baraloto, C., Thébaud, C. and Chave, J. 2010. Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest. J. Ecol. 98: 137146.

    • Search Google Scholar
    • Export Citation
  • Gotelli, N.J. and Graves, G.R. 1996. Null Models in Ecology. Smithsonian Institution Press, Washington.

  • Grabarnik, P., Myllymaki, M. and Stoyan, D. 2011. Correct testing of mark independence for marked point patterns. Ecol. Model. 222: 38883894.

    • Search Google Scholar
    • Export Citation
  • Hardy, O.J. 2008. Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. J. Ecol. 96: 914926.

    • Search Google Scholar
    • Export Citation
  • Heathfield, D., Kivistö, V., Mazzoleni, S. and Ricotta C. 2012. TreeCreeper a Computer Program for the Taxonomic Analysis of Species Assemblages. Department of Forestry and Environmental Sciences, University of Naples ‘Federico II’, Portici, Italy and World in a Box, Karkkila, Finland.

    • Search Google Scholar
    • Export Citation
  • Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. 2008. Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, Chichester.

    • Search Google Scholar
    • Export Citation
  • Janzen, D.H. 1970. Herbivores and the numbers of tree species in tropical forests. Amer. Nat. 104: 501528.

  • Johnson, D.J., Beaulieu, W.T., Bever, J.D. and Clay, K. 2012. Conspecific negative density dependence and forest diversity. Science 336: 904907.

    • Search Google Scholar
    • Export Citation
  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111120.

    • Search Google Scholar
    • Export Citation
  • Klimešová, J. and de Bello F. 2009. CLO—PLA: the database of clonal and bud bank traits of Central European flora. J. Veg. Sci. 20: 511516.

    • Search Google Scholar
    • Export Citation
  • Klironomos, J.N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417: 6770.

  • Kraft, N.J.B. and Ackerly, D.D. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol. Monog. 80: 401422.

    • Search Google Scholar
    • Export Citation
  • Law, R., Illian, J., Burslem, D.F.R.P., Gratzer, G., Gunatilleke, C.V.S. and Gunatilleke, I.A.U.N. 2009. Ecological information from spatial patterns of plants: insights from point process theory. J. Ecol. 97: 616628.

    • Search Google Scholar
    • Export Citation
  • Ling, Y. and Mahadevan, S. 2013. Quantitative model validation techniques: New insights. Reliability Engineering and System Safety 111: 217231.

    • Search Google Scholar
    • Export Citation
  • Losos, J.B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11: 9951007.

    • Search Google Scholar
    • Export Citation
  • Mangan, S.A., Schnitzer, S.A., Herre, E.A., Mack, K.M.L., Valencia, M.C., Sanchez, E.I. and Bever J.D. 2010. Negative plant—soil feedback predicts tree—species relative abundance in a tropical forest. Nature 466: 752755.

    • Search Google Scholar
    • Export Citation
  • Mazzoleni, S., Bonanomi, G., Giannino, F., Rietkerk, M., Dekker, S. and Zucconi, F. 2007. Is plant biodiversity driven by decomposition processes? An emerging new theory on plant diversity. Community Ecol. 8: 103109.

    • Search Google Scholar
    • Export Citation
  • Mazzoleni, S., Bonanomi, G., Incerti, G., Chiusano, M.L., Termolino, P., Mingo, A., Senatore, M., Giannino, F., Cartenì, F., Rietkerk, M. and Lanzotti, V. 2015a. Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant-soil feedbacks? New Phytol. 205: 11951210.

    • Search Google Scholar
    • Export Citation
  • Mazzoleni, S., Cartenì, F., Bonanomi, G., Senatore, M., Termolino, P., Giannino, F., Incerti, G., Rietkerk, M., Lanzotti, V. and Chiusano, M.L. 2015b. Inhibitory effects of extracellular self-DNA: a general biological process? New Phytol. 206: 127132.

    • Search Google Scholar
    • Export Citation
  • Metz, M.R., Sousa, W.P. and Valencia, R. 2010. Widespread density-dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest. Ecology 91: 36753685.

    • Search Google Scholar
    • Export Citation
  • Milla, R., Escudero, A. and Iriondo, J.M. 2009. Inherited variability in multiple traits determines fitness in populations of an annual legume from contrasting latitudinal origins. Ann. Bot. 103: 12791289.

    • Search Google Scholar
    • Export Citation
  • Morlon, H., Schwilk, D.W., Bryant, J.A., Marquet, P.A., Rebelo, A.G., Tauss, C., Bohannan, B.J.M. and Green, J.L. 2010. Spatial patterns of phylogenetic diversity. Ecol. Lett. 14: 141149.

    • Search Google Scholar
    • Export Citation
  • Ness, J.H., Rollinson, E.J. and Whitney, K.D. 2011. Phylogenetic distance can predict susceptibility to attack by natural enemies. Oikos 120: 13271334.

    • Search Google Scholar
    • Export Citation
  • Novotny, V., Miller, S.E., Baje, L., Balagawi, S., Basset, Y., Cizek, L., Craft, K.J., Dem, F., Drew, R.A.I., Hulcr, J., Leps, J., Lewis, O.T., Pokon, R., Stewart, A.J.A., Samuelson, G.A. and Weiblen, G.D. 2010. Guild-specific patterns of species richness and host specialization in plant—herbivore food webs from a tropical forest. J. Anim. Ecol. 79: 11931203.

    • Search Google Scholar
    • Export Citation
  • Packer A. , Clay K. (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404: 278281.

  • Paine, C.E.T., Norden, N., Chave, J., Forget, P.M., Fortunel, C., Dexter, K.G. and Baraloto, C. 2012. Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest. Ecol. Lett. 15: 3441.

    • Search Google Scholar
    • Export Citation
  • Petermann, J.S., Fergus, A.J.F., Turnbull, A. and Schmid, B. 2008. Janzen—Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89: 23992406.

    • Search Google Scholar
    • Export Citation
  • Podani, J. and Czárán, T. 1997. Individual—centered analysis of mapped point patterns representing multi—species assemblages. J. Veg. Sci. 8: 259270.

    • Search Google Scholar
    • Export Citation
  • Podani, J., Czárán, T. and Scheuring, I. 1998. Individual—centered analysis of community pattern: some case studies. Abstr. Bot. 22: 101112.

    • Search Google Scholar
    • Export Citation
  • Rajala, T. and Illian, J. 2012. A family of spatial biodiversity measures based on graphs. Environ. Ecol. Stat. 19: 545572.

  • Reynolds, H.L., Packer, A., Bever, J.D. and Clay, K. 2003. Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84: 22812291.

    • Search Google Scholar
    • Export Citation
  • Ripley, BD. 1981. Spatial Statistics. Wiley, New York.

  • Rohlf, F.J. and Archie, J.W. 1978. Least—squares mapping using interpoint distances. Ecology 59: 126132.

  • Rosenberg, M.S. and Anderson, C.D. 2011. PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis. Version 2. Meth. Ecol. Evol. 2: 229232.

    • Search Google Scholar
    • Export Citation
  • Seidler, T.G. and Plotkin, J.B. 2006. Seed dispersal and spatial pattern in tropical trees. PLoS Biol. 4: e344. DOI: 10.1371/journal.pbio.0040344.

    • Search Google Scholar
    • Export Citation
  • Simon, T. 1992. Guide to the Vascular Flora of Hungary. Tankönyvkiadó, Budapest (in Hungarian).

  • Singh, H.P., Batish, R.D. and Kohli, K.R. 1999. Autotoxicity: concept, organisms and ecological significance. Crit. Rev. Plant Sci. 18: 757772.

    • Search Google Scholar
    • Export Citation
  • Stanisci, A., Acosta, A.T.R., Di Iorio, A. and Vergalito, M. 2010. Leaf and root trait variability of alien and native species along Adriatic coastal dunes (Italy). Plant Biosyst. 144: 4752.

    • Search Google Scholar
    • Export Citation
  • Terborgh, J. 2012. Enemies maintain hyperdiverse tropical forests. Amer. Nat. 179: 303314.

  • Thompson, K., Petchey, O.L., Askew, A.P., Dunnett, N.P., Beckerman, A.P. and Willis, A.J. 2010. Little evidence for limiting similarity in a long-term study of a roadside plant community. J. Ecol. 98: 480487.

    • Search Google Scholar
    • Export Citation
  • Thuiller, W., Gasso, N., Pino, J. and Vilà, M. 2012. Ecological niche and species traits: key drivers of regional plant invader assemblages. Biol. Invasions 14: 19631980.

    • Search Google Scholar
    • Export Citation
  • Uriarte, M., Swenson, N.G., Chazdon, R.L., Comita, L.S., Kress, W.J., Erickson, D., Forero-Montana, J., Zimmerman, J.K. and Thompson, J. 2010. Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: implications for community assembly. Ecol. Lett. 13: 15031514.

    • Search Google Scholar
    • Export Citation
  • Vamosi, S.M., Heard, S.B., Vamosi, J.C. and Webb C.O. 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18: 572592.

    • Search Google Scholar
    • Export Citation
  • Van der Putten, W.H., Bardgett, R.D., Bever, J.D., Bezemer, T.M., Casper, B.B., Fukami, T., Kardol, P., Klironomos, J.N., Kulmatiski, A., Schweitzer, J.A., Suding, K.N., Van de Voorde, T.F.J. and Wardle, D.A. 2013. Plant—soil feedbacks: the past, the present and future challenges. J. Ecol. 101: 265276.

    • Search Google Scholar
    • Export Citation
  • Van der Putten, W.H., Van Dijk, C. and Peters, B.A.M. 1993. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362: 5356.

    • Search Google Scholar
    • Export Citation
  • Webb, C.O., Ackerly, D.D., McPeek, M.A. and Donoghue, M.J. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. Syst. 33: 475505.

    • Search Google Scholar
    • Export Citation
  • Webb, C.O., Gilbert, G.S. and Donoghue, M.J. 2006. Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology 87: S123S131.

    • Search Google Scholar
    • Export Citation
  • Wiegand, T., Gunatilleke, C.V.S., Gunatilleke, I.A.U.N. and Huth, A. 2007. How individual species structure diversity in tropical forests. PNAS USA 104: 1902919033.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)