View More View Less
  • 1 University of Almeria, Ctra. Sacramento s/n, ES 04120 Almeria, Spain
  • | 2 University of Almeria, Ctra. Sacramento s/n, ES 04120 Almeria, Spain
  • | 3 Szent Istvan University, H-2103 Gödöllő, Hungary
  • | 4 L. Eötvös University, Pázmány P. s. 1/c., Budapest, H-1117, Hungary
Restricted access

Cannibalism is a common phenomenon among insects. It has raised considerable interest both from a theoretical perspective and because of its importance in population dynamics in natural ecosystems. It could also play an important role from an applied perspective, especially when using predatory species in biological control programmes. The present paper aims to study the cannibalistic behaviour of Nabis pseudoferus Remane and the functional response of adult females. In a non-choice experiment, adult females showed clear acceptance of immature conspecifics as prey, with relatively high mortality values (51.89 ± 2.69%). These values were lower than those occurring for heterospecific prey, Spodoptera exigua Hübner, under the same conditions (80.00 ± 2.82%). However, the main result was that the rate of predation on heterospecific prey was reduced to 59.09 ± 7.08% in the presence of conspecific prey. The prey-capture behaviour of adult females differed when they hunted conspecific versus heterospecific prey. This was shown in the average handling time, which was 23.3 ± 3.3 min in the first case (conspecific) versus 16.6 ± 2.5 min in the second (heterospecific). Furthermore, the values increased in the former case and declined in the latter according to the order in which the prey were captured. The difference in handling time was not significant when adjusting the adult female functional response to conspecific nymphs. We argue that these results likely indicate risk aversion and a fear of reprisal among conspecifics.

  • Aleosfoor, M., N. Mortazavi and M. Poorkashkooli. 2014. Comparison cannibalistic behavior between two ladybirds, Coccinella septempunctata and Hippodamia variegata under laboratory experiments. Mun. Ent. Zool. 9: 645650.

    • Search Google Scholar
    • Export Citation
  • Braman, S.K. 2000. Damsel bugs (Nabidae). In: C.W. Shaefer and A.R. Panizzi (eds.), Heteroptera of Economic Importance. CRC Press. Boca Raton, FL., pp. 639656

    • Search Google Scholar
    • Export Citation
  • Bressendorff B.B. and S. Toff. 2011. Dome-shaped functional response induced by nutrient imbalance of the prey. Biol. Lett. 7: 517520.

    • Search Google Scholar
    • Export Citation
  • Cabello, T. 1988. Natural enemies of noctuid pests in alfalfa, corn, cotton and soybean crops in Southern Spain. J. Appl. Entomol. 108: 8088.

    • Search Google Scholar
    • Export Citation
  • Cabello, T., F. Bonfil, J.R. Gallego, F.J. Fernandez-Maldonado, M. Gamez and J. Garay. 2015. Can interactions between an omnivorous hemipteran and an egg parasitoid limit the level of biological control for the tomato pinworm? Environ. Entomol. 44: 1226.

    • Search Google Scholar
    • Export Citation
  • Cabello, T., J.R. Gallego, F.J. Fernandez-Maldonado, M. Gamez, E. Vila, M. Pino and E. Hernandez-Suarez. 2012. Biological control strategies for the South American tomato moth (Lep.: Gelechiidae) in greenhouse tomatoes. J. Econ. Entomol. 105: 20852096.

    • Search Google Scholar
    • Export Citation
  • Cabello, T., M. Gamez, A. Torres and J. Garay. 2011. Possible effects of inter-specific competition on the coexistence of two parasitoid species: Trichogramma brassicae and Chelonus oculator (Hym.: Trichogrammatidae, Braconidae). Community Ecol. 12: 7888.

    • Search Google Scholar
    • Export Citation
  • Cabello, T., M. Gamez and Z. Varga. 2007. An improvement of the Holling type III functional response in entomophagous species model. J. Biol. Syst. 15: 515524.

    • Search Google Scholar
    • Export Citation
  • Cabello, T., H. Rodriguez and P. Vargas. 1984. Development, longevity and fecundity of Sopodoptera littoralis (Lep.: Noctuidae) reared on eight artificial diets. J. Appl. Entomol. 97: 494499.

    • Search Google Scholar
    • Export Citation
  • Canon, 2014. Communication Software for the Camera EOS Utility, Version 2.14. Canon Inc.

  • Capinera, J.L. 2010. Insects and Wildlife. Wiley-Blackwell, Singapore.

  • Clercq, P., T.A. Coudron and E.W. Riddick. 2014. Production of heteropteran predators. In: J.A. Morales-Ramos, M.G. Rojas and D.I. Shapiro-Ilan (eds.), Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens. Academic Press, Amsterdam. pp. 57100.

    • Search Google Scholar
    • Export Citation
  • Cock, M. 1978. The assessment of preference. J. Anim. Ecol. 47: 805816.

  • Dixon, A.F.G. 2000. Insect Predator-Prey Dynamics: Ladybird Beetles and Biological Control. Cambridge University Press, Cambridge.

  • Dong, Q. and G.A. Polis. 1992. The dynamics of cannibalistic populations: a foraging perspective. In: M.A. Elgar, and B.J. Crespi (eds.), Cannibalism: Ecology and Evolution among Diverse Taxa. Oxford University Press, Oxford. pp. 1337.

    • Search Google Scholar
    • Export Citation
  • Elgar, M.A. and B.J. Crespi. 1992. Ecology and evolution of cannibalism. In: M. A. Elgar and B.J. Crespi (eds.), Cannibalism: Ecology and Evolution among Diverse Taxa. Oxford University Press, Oxford. pp. 112.

    • Search Google Scholar
    • Export Citation
  • Fagan, W.F. 1997. Omnivory as a stabilizing feature of natural communities. Am. Nat. 150: 554567.

  • Fathipour Y. and A.A.F. Jafari. 2003. Functional response of predators Nabis capsiformis and Chrysoperla carnea to different densities of Creontiades pallidus nymphs. J. Agric. Sci. Nat. Resour. 10: 125133.

    • Search Google Scholar
    • Export Citation
  • Fox, L.R. 1975. Cannibalism in natural populations. Annu. Rev. Ecol. Evol. S. 6: 87106.

  • Garay, J. and F.T. Mori. 2010. When is the opportunism remunerative? Community Ecol. 11: 160170.

  • Garay, J., Z. Varga, M. Gamez and T. Cabello. 2015. Functional response and population dynamics for fighting predator, based on activity distribution. J. Theor. Biol. 368: 7482.

    • Search Google Scholar
    • Export Citation
  • Hack, M.A. 1997. The energetic costs of fighting in the house cricket, Acheta domesticus L. Behav. Ecol. 8: 2836.

  • Hagen, K.S., N.J. Mills, G. Gordh and J.A. McMurtry. 1999. Terrestrial arthropod predators of insect and mite pests. In: T.S. Bellows, T.W. Fisher, L.E. Caltagirone, D.L. Dahlsten, G. Gordh and C.B. Huffaker (eds.), Handbook of Biological Control: Principles and Applications of Biological Control. Academic Press, London. pp. 383503.

    • Search Google Scholar
    • Export Citation
  • Hamdi, F., J. Chadoeuf, B. Chermiti and O. Bonato. 2013. Evidence of cannibalism in Macrolophus pygmaeus, a natural enemy of whiteflies. J. Insect Behav. 26: 614621.

    • Search Google Scholar
    • Export Citation
  • Holling, C.S. 1959. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91: 293320.

    • Search Google Scholar
    • Export Citation
  • Holling, C.S. 1961. Principles of insect predation. Annu. Rev. Entomol. 6: 163182.

  • Hurd, L.E. 2008. Predation: The role of generalist predators in biodiversity and biological control. In: J.L. Capinera (ed.), Encyclopedia of Entomology. Springer, Dordrecht, NL. pp. 30383042.

    • Search Google Scholar
    • Export Citation
  • IBM. 2012. IBM SPSS Statistics for Windows, Version 21.0. IBM Corp. Armonk, NY.

  • Jandel Scientific. 1994. Table Curve 2D User’s Manual. Version 2.0. Jandel Scientific. San Rafael, CA.

  • Jeschke J.M. , M. Kopp and R. Tollrian. 2004. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79: 337349.

    • Search Google Scholar
    • Export Citation
  • Joyner, K. and F. Gould. 1987. Conspecific tissues and secretions as sources of nutrition. In: F. Slansky and J.G. Rodriguez (eds.), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. Wiley, NY. pp 697719.

    • Search Google Scholar
    • Export Citation
  • Juliano, S.A. 2001. Nonlinear curve fitting. Predation and functional response curves. In: S.M. Scheiner and J. Gurevitch (eds.), Design and Analysis of Ecological Experiments. Oxford University Press, Oxford. pp. 178196.

    • Search Google Scholar
    • Export Citation
  • Kishida, O., G.C. Trussell, K. Nishimura and T. Ohgushi. 2009. Inducible defenses in prey intensify predator cannibalism. Ecology 90: 31503158.

    • Search Google Scholar
    • Export Citation
  • Latham, D.R. and N.J. Mills. 2009. Quantifying insect predation: a comparison of three methods for estimating daily per capita consumption of two aphidophagous predators. Environ. Entomol. 38: 11171125.

    • Search Google Scholar
    • Export Citation
  • Leon-Beck, M. and M. Coll. 2007. Plant and prey consumption cause a similar reductions in cannibalism by an omnivorous bug. J. Insect Behav. 20: 6776.

    • Search Google Scholar
    • Export Citation
  • Mangeaud, A. and M. Videla. 2005. En busca de la independencia perdida: la utilización de modelos lineales generalizados mixtos en pruebas de preferencia. Ecol. Austral 15: 199206.

    • Search Google Scholar
    • Export Citation
  • Manly, B.F.J., P. Miller and L. Cook. 1972. Analysis of a selective predation experiment. Am. Nat. 106: 719736.

  • Mayntz, D., D. Raubenheimer, M. Salomon, S. Toft and S.J. Simpson. 2005. Nutrient-specific foraging in invertebrate predators. Science 307: 111112.

    • Search Google Scholar
    • Export Citation
  • Mills, N.J. 1982. Voracity, cannibalism and coccinellid predation. Ann. Appl. Biol. 101: 144148.

  • Motulsky, H. and A. Christopoulos. 2003. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. GraphPad Software, Inc., San Diego, CA.

    • Search Google Scholar
    • Export Citation
  • Perkins, P.V. and T.F. Watson. 1972. Biology of Nabis alternatus (Hem.: Nabidae). Ann. Entomol. Soc. Am. 65: 5457.

  • Pfennig, D.W., H.K. Reeve and P.W. Sherman. 1993. Kin recognition and cannibalism in spadefoot toad tadpoles. Anim. Behav. 46: 8794.

  • Polis, G.A. 1981. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Evol. S., 12: 225251.

  • Propp, G.D. 1982. Functional response of Nabis americoferus to two of its prey, Spodoptera exigua and Lygus hesperus. Environ. Entomol. 11: 670674.

    • Search Google Scholar
    • Export Citation
  • Puchkov, A.V. 1980. Particulars of the biology of predacious Nabis spp. Zashch. Rast. 8: 44.

  • Ramirez, C.C., E. Fuentes-Contreras, L.C. Rodríguez and H.M. Niemeyer. 2000. Pseudoreplication and its frequency in olfactometric laboratory studies. J. Chem. Ecol. 26: 14231431.

    • Search Google Scholar
    • Export Citation
  • Ricard, I. 2008. Statistical Methods for Insect Choice Experiments. PhD Dissertation. École Polytechnique Fédérale de Lausanne, Lausanne, CH.

    • Search Google Scholar
    • Export Citation
  • Riechert, S.E. 1988. The energetic costs of fighting. Integr. Comp. Biol. 28: 877884.

  • Rudolf, H.W. 2008. Impact of cannibalism on predator-prey dynamics: size-structured interactions and apparent mutualism. Ecology 89: 16501660.

    • Search Google Scholar
    • Export Citation
  • Santana, A.F., A.C. Roselino, F.A. Cappelari and F.S. Zucoloto. 2012. Cannibalism in insects. In: A.R. Panizzi and J.R.P. Parra (eds.), Insect Bioecology and Nutrition for Integrated Pest Management. CRC Press and Taylor and Francis Group, Boca Raton, FL. pp. 177194.

    • Search Google Scholar
    • Export Citation
  • Schenk, D., L.F. Bersier and S. Bacher. 2005. An experimental test of the nature of predation: neither prey-nor ratio-dependent. J. Anim. Ecol. 74: 8691.

    • Search Google Scholar
    • Export Citation
  • Schmitz, O.J. 2007. Predator diversity and trophic interactions. Ecology 88: 24152426.

  • Schneider, C.A., W.S. Rasband and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671675.

  • Sherratt, T. and I. Harvey. 1993. Frequency-dependent food selection by arthropods: a review. Biol. J. Linn. Soc. 48: 167186.

  • Siddique, A.B. and R.B. Chapman. 1987. Functional response of Pacific damsel bug, Nabis kinbergii (Hem.: Nabidae). Entomophaga 32: 303309.

    • Search Google Scholar
    • Export Citation
  • Statgraphics. 2010. Statgraphics Centurion XVI User Manual. StatPoint Technologies, Inc., Warrenton, VA.

  • Stasek, D.J. 2009. Population Responses of a Generalist Insect Predator and its Prey to Patch Characteristics in Forage Crops. PhD Dissertation. Faculty of Miami University, FL.

    • Search Google Scholar
    • Export Citation
  • Toft, S. and D.H. Wise. 1999. Behavioral and ecophysiological responses of a generalist predator to single- and mixed-species diets of dfferent quality. Oecologia 119: 198207.

    • Search Google Scholar
    • Export Citation
  • Ulusoy, M.R. and S. Ulgenturk. 2003. The natural enemies of whiteflies (Hem.: Aleyrodidae) in southern Anatolia. Zool. Middle East 28: 119124.

    • Search Google Scholar
    • Export Citation
  • Vila, E. and T. Cabello. 2014. Biosystems engineering applied to greenhouse pest control. In: I. Torres and R. Guevara (eds.), Biosystems Engineering: Biofactories for Food Production in the XXI Century. Springer, Berlin. pp. 99128.

    • Search Google Scholar
    • Export Citation
  • Wade M.R. , M.P. Zalucki and B.A. Franzmann. 2005. Influence of observer presence on Pacific damsel bug behavior: who is watching whom? J. Insect Behav. 18: 651667.

    • Search Google Scholar
    • Export Citation
  • Wagner, J.D. and D.H. Wise. 1996. Cannibalism regulates densities of young wolf spiders: evidence from field and laboratory experiments. Ecology 77: 639652.

    • Search Google Scholar
    • Export Citation
  • Weber, M.J., J.M. Dettmers, D.H. Wahl and S.J. Czesny. 2010. Effects of predator-prey interactions and benthic habitat complexity on selectivity of a foraging generalist. T. Am. Fish. Soc. 139: 10041013.

    • Search Google Scholar
    • Export Citation