View More View Less
  • 1 Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, Miranda, Venezuela
  • | 2 International Union for the Conservation of Nature, Rue Mauverney 28, 1196 Gland, Switzerland
Restricted access

The study of co-occurrence patterns has been extensively applied to propose assembly rules for community organization. Recently, a new interest has grown in the effect of gradients on these patterns and to analyze them through new approximations such as co-occurrence networks, through which keystone species can be identified. Neotropical floodplains represent interesting systems to study such patterns, because of their spatial heterogeneity, temporal variability and their high fish species richness. With this in mind, our goal was to study the co-occurrence patterns of fish in a segment of the Arauca River’s floodplain and the influence of the spatial and temporal variability on them. One stream and one floodplain lake were sampled with gill nets during 2014 – 2015 across a hydrological cycle and 5 matrices for each 5 sampled months in each water body were prepared to explore the co-occurrence patterns in each water body across months and 2 for the entire period, through a probabilistic pair-wise analysis of species co-occurrence that identified aggregated and segregated species pairs. With the observed cooccurrences × water body × month, the species weighted degrees and betweenness were calculated, and co-occurrence networks were constructed. The networks structures, in terms of the degrees of every species, were compared spatially and temporally through a generalized linear model. The stream showed the highest numbers of aggregated species pairs, and in general showed the most complex networks in terms of nodes, edges and degrees. The habitat type and the hydrological phases significantly influenced the structure of the fish co-occurrence networks. Two species, Loricariichthys brunneus and Pygocentrus cariba were identified as the core of the fish communities of the floodplain and as keystone species because they contribute to the connection of the networks by having a series of links with less frequent species.

  • Adlte, A. and K.O. Winemiller. 1996. Trophic ecology and ecomorphology of fish assemblages in coastal lakes of Benin, West Africa. Ecoscience 4:623.

    • Search Google Scholar
    • Export Citation
  • Amestoy, P., A. Azzalini, T. Badics, G. Benison, A. Bowmanm, W. Böhm and K. Briggs. 2015. Package “ igraph .” CRAN.

  • Araújo, M.B., A. Rozenfeld, C. Rahbek and P.A. Marquet. 2011. Using species co-occurrence networks to assess the impacts of climate change. Ecography 34:897908.

    • Search Google Scholar
    • Export Citation
  • Arrington, D.A. and K.O. Winemiller. 2003. Diel changeover in sandbank fish assemblages in a Neotropical floodplain river. J. Fish Biol. 63:442459.

    • Search Google Scholar
    • Export Citation
  • Arrington, D. A. and K. O. Winemiller. 2006. Habitat affinity, the seasonal flood pulse, and community assembly in the littoral zone of a Neotropical floodplain river. J. North Ameri. Benthol.Soc. 25:126141.

    • Search Google Scholar
    • Export Citation
  • Arrington, D.A., K.O. Winemiller and C.A. Layman. 2005. Community assembly at the patch scale in a species rich tropical river. Oecologia 144:15767.

    • Search Google Scholar
    • Export Citation
  • Barbarino, A. and K.O. Winemiller. 2003. Dietary segregation among large catfishes of the Apure and Arauca Rivers, Venezuela. J. Fish Biol. 63:410427.

    • Search Google Scholar
    • Export Citation
  • Barrat, A., M, Barthélemy, R. Pastor-Satorras and A. Vespigniani. 2004. The architecture of complex weighted networks. PNAS 101:37473752.

    • Search Google Scholar
    • Export Citation
  • Bell, G. 2005. The co-distribution of species in relation to the neutral theory of community ecology. Ecology 86:17571770.

  • Benedito-Cecilio, E. and Â.A. Agostinho. 1999. Determination of patterns of icthyofauna co-occurrence in the Paraná River basin, area of influence of the Itaipu reservoir. Interciencia 24:360365.

    • Search Google Scholar
    • Export Citation
  • Blasina, G., J. Molina, A. Lopez Cazorla and J. D. Astarloa. 2016. Relationship between ecomorphology and trophic segregation in four closely related sympatric fish species (Teleostei, Sciaenidae). Comptes Rendus Biologies 339:498506.

    • Search Google Scholar
    • Export Citation
  • Cecilio, E.B., A.A. Agostinho and C.S. Pavanelli. 1997. Colonizacao ictiofaunística do reservatório de Itaipu e áreas adjacentes. Rev. Bras. Zool. 14:114.

    • Search Google Scholar
    • Export Citation
  • Céréghino, R., F. Santoul, A. Compin, J. Figuerola and S. Mastrorillo. 2005. Co-occurrence patterns of some small-bodied freshwater fishes in southwestern France: implications for fish conservation and environmental management. Ambio 34:440444.

    • Search Google Scholar
    • Export Citation
  • Connor, E.F. and D. Simberloff. 1979. The assembly of species communities: chance or competition? Ecology 60:11321140.

  • Diamond, J. 1975. Assembly rules. In: M. Cody and J. Diamond (eds.), Ecology and Evolution of Communities. Harvard University Press, Cambridge, Mass. pp. 342444.

    • Search Google Scholar
    • Export Citation
  • Erős, T., P. Takács, A. Specziár, D. Schmera and P. Sály. 2016. Effect of landscape context on fish metacommunity structuring in stream networks. Freshwater Biol. 62:114.

    • Search Google Scholar
    • Export Citation
  • Eschmeyer, W.N., R. Fricke and R. van der Laan (eds). 2016. Catalog Of Fishes: Genera, Species, References. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). Electronic version accessed in 2017.

    • Search Google Scholar
    • Export Citation
  • Fernandes, I.M., R. Henriques-Silva, J. Penha, J. Zuanon and P.R. Peres-Neto. 2013. Spatiotemporal dynamics in a seasonal meta-community structure is predictable: the case of floodplain-fish communities. Ecography 37:464475.

    • Search Google Scholar
    • Export Citation
  • Flecker, A.S. 1992. Fish trophic guilds and the structure of a tropical stream: Weak direct vs. strong indirect effects. Ecology 73:927940.

    • Search Google Scholar
    • Export Citation
  • Girvan, M. and M.E.J. Newman. 2002. Community structure in social and biological networks. PNAS USA 99:78217826.

  • Gotelli, N.J. and G. Graves. 1996. Null Models in Ecology. Smithsonian Institution Press, Washington and London. pp. 358.

  • Gotelli, N.J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81:26062621.

  • Gotelli, N.J., N.J. Buckley and J.A. Wiens. 1997. Co-occurrence of Australian land birds: Diamond’s assembly rules revisited. Oikos 80:311324.

    • Search Google Scholar
    • Export Citation
  • Gotelli, N.J. and D.J. McCabe. 2002. Species co-occurrence: A meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83:2091.

  • Griffith, D.M., J.A. Veech and C.J. Marsh. 2016. cooccur: Probabilistic species co-occurrence analysis in R. J. Stat.Softw. 69:117.

  • Hoeinghaus, D.J., K.O. Winemiller and J.S. Birnbaum. 2006. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. J. Biogeogr. 34:115.

    • Search Google Scholar
    • Export Citation
  • Horner-Devine, M.C., J.M. Silver, M.A. Leibold, B.J.M. Bohannan, R.K. Colwell, J.A. Fuhrman, J.L. Green, C.R. Kuske, J.B.H. Martiny, G. Muyzer, L. Ovreås, A.-L. Reysenbach and V.H. Smith. 2007. A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88:134553.

    • Search Google Scholar
    • Export Citation
  • Hubbell, S. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, New Jersey.

  • Jackson, A.T., A. Adite, K.A. Roach and K.O. Winemiller. 2013. Fish assemblages of an African river floodplain: a test of alternative models of community structure. Ecol. Freshw. Fish 22:295306.

    • Search Google Scholar
    • Export Citation
  • Jackson, D., P.R. Peres-Neto and J.D. Olden. 2001. What controls who is where in freshwater fish communities – the roles of biotic, abiotic, and spatial factors. Can. J. Fish. Aquat. Sci. 58:157170.

    • Search Google Scholar
    • Export Citation
  • Jackson, D., K.M. Somers and H.H. Harvey. 1992. Null models and fish communities: evidence of nonrandom patterns. Amer. Nat. 139:930951.

    • Search Google Scholar
    • Export Citation
  • Jordán, F., T.A. Okey, B. Bauer and S. Libralato. 2008. Identifying important species: Linking structure and function in ecological networks. Ecol. Model. 216:7580.

    • Search Google Scholar
    • Export Citation
  • Junk, W., P. Bayley and E. Sparks. 1989. The Flood Pulse Concept in River - Floodplain Systems. In: P. Dodge, (ed.), Proceedings of the International Large Rivers Symposium. Canadian Special Publications in Fish and Aquatic Science. pp. 110127.

    • Search Google Scholar
    • Export Citation
  • Keddy, P. and E. Weiher. 2004. Introduction: The scope and goals of research on assembly rules. In: E. Weiher and P. Keddy (eds.). Ecological Assembly Rules. Perspectives, Advances, Retreats. Cambridge University Press, Cambridge, UK. pp. 120.

    • Search Google Scholar
    • Export Citation
  • Layman, C.A. and K.O. Winemiller. 2005. Patterns of habitat segregation among large fishes in a Venezuelan floodplain river. Neotrop. Ichthyol. 3:103109.

    • Search Google Scholar
    • Export Citation
  • Lewis, W., S. Hamilton, M.A., Lasi, M. Rodríguez and F.J. Saunders. 2000. Ecological Determinism on the Orinoco Floodplain. BioScience 50:681692.

    • Search Google Scholar
    • Export Citation
  • Lowe-McConnell, R.H. 1975. Fish Communities in Tropical Freshwaters. Their Distribution, Ecology and Evolution. Longman Inc., New York.

    • Search Google Scholar
    • Export Citation
  • MacArthur, R. H. and E. O. Wilson. 1967. Theory of Island Biogeography. Princeton University Press, Princeton.

  • Mokross, K., T.B. Ryder, M.C. Côrtes, J.D. Wolfe and P.C. Stouffer. 2014. Decay of interspecific avian flock networks along a disturbance gradient in Amazonia. Proc. Royal Soc. B: Biol. Sci. 281:0110.

    • Search Google Scholar
    • Export Citation
  • Montaña, C.G., C. Layman and K.O. Winemiller. 2015. Species-area relationship within benthic habitat patches of a tropical floodplain river: An experimental test. Austral Ecol. 40:331336.

    • Search Google Scholar
    • Export Citation
  • Morueta-Holme, N., B. Blonder, B. Sandel, B.J. Mcgill, R.K. Peet, J.E. Ott, C. Violle, B. J. Enquist, P.M. Jorgensen and J.C. Svenning. 2016. A network approach for inferring species associations from co-occurrence data. Ecography 39:112.

    • Search Google Scholar
    • Export Citation
  • Mouchet, M.A., M.D.M. Burns, A M. Garcia, J.P. Vieira and D. Mouillot. 2013. Invariant scaling relationship between functional dissimilarity and co-occurrence in fish assemblages of the Patos Lagoon estuary (Brazil): Environmental filtering consistently overshadows competitive exclusion. Oikos 122:247257.

    • Search Google Scholar
    • Export Citation
  • Mouillot, D., O. Dumay and J.A. Tomasini. 2007. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuarine, Coastal and Shelf Science 71:443456.

    • Search Google Scholar
    • Export Citation
  • Opsahl, T. 2015. tnet. V. 3.0.14. Software for Analysis of Weighted, Two-Mode, and Longitudinal Networks. CRAN. Available at http://toreopsahl.com. United Kingdom.

    • Search Google Scholar
    • Export Citation
  • Opsahl, T., F. Agneessens, and Skvoretz, J. 2010. Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks 32: 245251.

    • Search Google Scholar
    • Export Citation
  • Opsahl, T. and P. Panzarasa. 2009. Clustering in weighted networks. Social Networks 31: 155163. doi:10.1016/j.socnet.2009.02.002

  • Pease, A., J.M. Taylor, K.O. Winemiller and R.S. King. 2015. Ecoregional, catchment, and reach-scale environmental factors shape functional-trait structure of stream fish assemblages. Hydrobiologia 753:265283.

    • Search Google Scholar
    • Export Citation
  • Peres-Neto, P.R. 2004. Patterns in the co-occurrence of fish species in streams: the role of site suitability, morphology and phylogeny versus species interactions. Oecologia 140:35260.

    • Search Google Scholar
    • Export Citation
  • Petry, A.C., A.A. Agostinho and L. C. Gomes. 2003a. Fish assemblages of tropical floodplain lagoons: exploring the role of connectivity in a dry year. Neotrop. Ichthyol. 1:111119.

    • Search Google Scholar
    • Export Citation
  • Petry, P., P.B. Bayley and D.F. Markle. 2003b. Relationships between fish assemblages , macrophytes and environmental gradients in the Amazon River floodplain. J. Fish Biol. 63:547579.

    • Search Google Scholar
    • Export Citation
  • Power, M.E. and W.E. Dietrich. 2002. Food webs in river networks. Ecol. Res. 17:451471.

  • Proulx, S.R., D.E.L. Promislow and P.C. Phillips. 2005. Network thinking in ecology and evolution. Trends Ecol. Evol. 20:345353.

  • R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  • Reis, R.E., J.S. Albert, F. Di Dario, M.M.M. Mincarone, P.L. Petry and L.R. Rocha. 2016. Fish Biodiversity and Conservation in South America. J. Fish Biol. 89:1247.

    • Search Google Scholar
    • Export Citation
  • Rodríguez, M. and W. Lewis. 1994. Regulation and stability in fish assemblages of Neotropical floodplain lakes. Oecologia 99:166180.

  • Sampaio, A.L.A., J.P.A. Pagotto and E. Goulart. 2013. Relationships between morphology, diet and spatial distribution: testing the effects of intra and interspecific morphological variations on the patterns of resource use in two Neotropical Cichlids. Neotrop.Ichthyol. 11:351360.

    • Search Google Scholar
    • Export Citation
  • Scarabotti, P., J. López and M. Pouilly. 2011. Flood pulse and the dynamics of fish assemblage structure from Neotropical floodplain lakes. Ecol. Freshw. Fish 20:605618.

    • Search Google Scholar
    • Export Citation
  • Stone, L. and A. Roberts. 1992. Competitive exclusion, or species aggregation? An aid in deciding. Oecologia 91:419424.

  • Strange, E., P. Moyle and T. Foin. 1992. Interactions between stochastic and deterministic processes in stream fish community assembly. Environ. Biol. Fishes 36:115.

    • Search Google Scholar
    • Export Citation
  • Taphorn, D C. and C. Lylestrom. 1985. Revista UNELLEZ de Ciencia y Tecnologia 3:5585.

  • Team, R.D.C. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Thorp, J.H., M.C. Thoms and M.D. Delong. 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. App. 22:123147.

    • Search Google Scholar
    • Export Citation
  • Thorp, J., M. Thoms and M. Delong. 2008. Ecological implications of the Riverine Ecosystem Synthesis: Some proposed biocomplexity tenets. In: J. Thorp et al. (ed.). The Riverine Ecosystem Synthesis. Elsevier, London, UK. Chapter 6. pp. 103131.

    • Search Google Scholar
    • Export Citation
  • Townsend, C. 1989. The patch dynamics concept of stream community ecology. J. North Amer. Benthol. Soc. 8:3650.

  • Ulrich, W. and N.J. Gotelli. 2013. Pattern detection in null model analysis. Oikos 122:218.

  • Veech, J. 2006. A probability-based analysis of temporal and spatial co-occurrence in grassland birds. J. Biogeogr. 33:21452153.

  • Veech, J. 2013. A probabilistic model for analyzing species co-occurrence. Global Ecol. Biogeogr. 22:252260.

  • Veech, J. 2014. The pairwise approach to analyzing species co-occurrence. J. Biogeogr. 41:10291035.

  • Weiher, E. and P. Keddy. 2004. Assembly rules as general constraints on community composition. In: E. Weiher and P. Keddy (eds.), Ecological Assembly Rules. Perspectives, Advances, Retreats. Cambridge University Press, Cambridge, UK. pp. 251271

    • Search Google Scholar
    • Export Citation
  • Widder, S., K. Besemer, G.A. Singerb, S. Ceolae, E. Bertuzzof, C. Quinceg, W.T. Sloang, A. Rinaldof and T.J. Battin. 2014. Fluvial network organization imprints on microbial co-occurrence networks. Proc. Nat. Acad. Sci. USA 111:1279912804.

    • Search Google Scholar
    • Export Citation
  • Williams, R.J., A. Howe and K.S. Hofmockel. 2014. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Frontiers Microbiol. 5:110.

    • Search Google Scholar
    • Export Citation
  • Winemiller, K.O. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr. 60:331367.

  • Winemiller, K.O. 1996. Dynamic diversity in fish assemblages of tropical rivers. In: M. L. Cody and J. A. Smallwood (eds.). Long-Term Studies of Vertebrate Communities. Academic Press, London. pp. 99134.

    • Search Google Scholar
    • Export Citation
  • Wisz, M.S., J. Pottier, W.D. Kissling, L. Pellissier, J. Lenoir, C.F. Damgaard, C.F. Dormann, M.C. Forchhammer, J.-A. Grytnes, A. Guisan, R.K. Heikkinen, T.T. Høye, I. Kühn, M. Luoto, L. Maiorano, M.-C. Nilsson, S. Normand, E. Öckinger, N.M. Schmidt, M. Termansen, A. Timmermann, D.A. Wardle, P. Aastrup and J.-C. Svenning. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modeling. Biol. Rev. 88:1530.

    • Search Google Scholar
    • Export Citation
  • Zaret, T.M. and S. Rand. 1971. Competition in tropical stream fishes: Support for the competitive exclusion principle. Ecology 52:336342.

    • Search Google Scholar
    • Export Citation

Click HERE for submission guidelines.


Manuscript submission: COMEC Manuscript Submission

 

Senior editors

Editor(s)-in-Chief: Podani, János

Editor(s)-in-Chief: Jordán, Ferenc

Honorary Editor(s): Orlóci, László

Editorial Board

  • Madhur Anand, CAN (forest ecology, computational ecology, and ecological complexity)
  • S. Bagella, ITA (temporal dynamics, including succession, community level patterns of species richness and diversity, experimental studies of plant, animal and microbial communities, plant communities of the Mediterranean)
  • P. Batáry, HUN (landscape ecology, agroecology, ecosystem services)
  • P. A. V. Borges, PRT (community level patterns of species richness and diversity, sampling in theory and practice)
  • A. Davis, GER (supervised learning, multitrophic interactions, food webs, multivariate analysis, ecological statistics, experimental design, fractals, parasitoids, species diversity, community assembly, ticks, biodiversity, climate change, biological networks, cranes, olfactometry, evolution)
  • Z. Elek, HUN (insect ecology, invertebrate conservation, population dynamics, especially of long-term field studies, insect sampling)
  • T. Kalapos, HUN (community level plant ecophysiology, grassland ecology, vegetation-soil relationship)
  • G. M. Kovács, HUN (microbial ecology, plant-fungus interactions, mycorrhizas)
  • W. C. Liu,TWN (community-based ecological theory and modelling issues, temporal dynamics, including succession, trophic interactions, competition, species response to the environment)
  • L. Mucina, AUS (vegetation survey, syntaxonomy, evolutionary community ecology, assembly rules, global vegetation patterns, mediterranean ecology)
  • P. Ódor, HUN (plant communities, bryophyte ecology, numerical methods)
  • F. Rigal, FRA (island biogeography, macroecology, functional diversity, arthropod ecology)
  • D. Rocchini, ITA (biodiversity, multiple scales, spatial scales, species distribution, spatial ecology, remote sensing, ecological informatics, computational ecology)
  • F. Samu, HUN (landscape ecology, biological control, generalist predators, spiders, arthropods, conservation biology, sampling methods)
  • U. Scharler, ZAF (ecological networks, food webs, estuaries, marine, mangroves, stoichiometry, temperate, subtropical)
  • D. Schmera, HUN (aquatic communities, functional diversity, ecological theory)
  • M. Scotti, GER (community-based ecological theory and modelling issues, trophic interactions, competition, species response to the environment, ecological networks)
  • B. Tóthmérész, HUN (biodiversity, soil zoology, spatial models, macroecology, ecological modeling)
  • S. Wollrab, GER (aquatic ecology, food web dynamics, plankton ecology, predator-prey interactions)

 

Advisory Board

  • S. Bartha, HUN
  • S.L. Collins, USA
  • T. Czárán, HUN
  • E. Feoli, ITA
  • N. Kenkel, CAN
  • J. Lepš, CZE
  • S. Mazzoleni, ITA
  • Cs. Moskát, HUN
  • B. Oborny, HUN
  • M.W. Palmer, USA
  • G.P. Patil, USA
  • V. de Patta Pillar, BRA
  • C. Ricotta, ITA
  • Á. Szentesi, HUN

PODANI, JÁNOS
E-mail: podani@ludens.elte.hu


JORDÁN, FERENC
E-mail: jordan.ferenc@gmail.com

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Biology & Environmental Sciences
  • Elsevier/Geo Abstracts
  • Science Citation Index Expanded
  • SCOPUS
  • Zoological Abstracts

 

 

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)