Authors:
C. Vieira da Silva Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu (SP), Brazil

Search for other papers by C. Vieira da Silva in
Current site
Google Scholar
PubMed
Close
,
I. Bianchini Jr. Universidade Federal de São Carlos (UFSCar), São Carlos (SP), Brazil

Search for other papers by I. Bianchini Jr. in
Current site
Google Scholar
PubMed
Close
,
J. F. Gonçalves Jr. Universidade de Brasília (UnB), Brasília (DF), Brazil

Search for other papers by J. F. Gonçalves Jr. in
Current site
Google Scholar
PubMed
Close
,
R. A. Oliveira Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu (SP), Brazil

Search for other papers by R. A. Oliveira in
Current site
Google Scholar
PubMed
Close
, and
R. Henry Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu (SP), Brazil

Search for other papers by R. Henry in
Current site
Google Scholar
PubMed
Close
Restricted access

The knowledge of the decomposition of macrophytes and associated organisms is important to understand ecological processes that control aquatic ecosystem metabolism. The aims of the study were: 1) to investigate the structure and composition of the aquatic invertebrate community associated with the decomposition of leaves of the macrophyte Eichhornia azurea over time; 2) to determine the biomass of microorganisms (fungi and bacteria) and their relationship with the associated invertebrate communities; and 3) to assess the relationship between biotic and abiotic variables and invertebrate density. To analyze the decomposition process, leaves of E. azurea were put into litter bags and incubated in Barbosa Lake, São Paulo State, Brazil. Litter bags were retrieved at seven sampling occasions during a 2.5 month period. We measured decomposition rates of leaves, and the associated communities of invertebrates, the biomass of bacteria and fungi, and biotic and abiotic variables that might be associated with the decomposition process. Significant differences were found in the densities of invertebrates. The microorganism biomass also varied significantly throughout the experiment. Fungal biomass (ergosterol concentration) was positively associated with the density of most taxonomic groups of aquatic invertebrates, as well as the total density of invertebrates and their taxonomic richness. Total invertebrate density increased during the experiment, but the taxonomic richness of invertebrates did not follow this pattern. Insecta and Crustacea densities were the main contributors to similarity within the groups formed at each sampling time. The different ways that invertebrates use detritus, such as a food source or a feeding site, as well as their feeding plasticity, may have contributed to the increase in the total invertebrate density over time as decomposition progressed. After two months and a half of macrophyte incubation the loss of E. azurea leaf biomass was less than 4.4% of the initial value. Factors such as decreasing temperature throughout the experiment, possible inhibition of microorganism growth by leachates, the predominantly oligotrophic environment and low abrasion due to the environment lentic regime may have contributed to the low rate of decomposition of E. azurea. Our results suggest that decomposition process in the present study has not begun in fact and/or macrophyte decomposition in nature is much slower than previously thought.

  • Abelho, M. 2005. Extraction and Quantification of ATP as a Measure of Microbial Biomass. In: Graça, M.A.S., F. Bärlocher and M.O. Gessner. (eds.), Methods to Study Litter Decomposition: a Practical Guide. Springer, Dordrecht. pp. 223229.

    • Search Google Scholar
    • Export Citation
  • Abelho, M., C. Cressa and M. Graça. 2005. Microbial biomass, respiration, and decomposition of Huracrepitans L. (Euphorbiaceae) leaves in a tropical stream. Biotropica, 37(3):397402.

    • Search Google Scholar
    • Export Citation
  • Abelho, M. , 2009. ATP and ergosterol as indicators of fungal biomass during leaf decomposition in streams: a comparative study. International Review of Hydrobiology 94(1):315.

    • Search Google Scholar
    • Export Citation
  • Albertoni, E.F., L.U. Hepp, C. Carvalho and C. Palma-Silva. 2018. Invertebrate composition in submerged macrophyte debris: habitat and degradation time effects. Ecología Austral 28:093103.

    • Search Google Scholar
    • Export Citation
  • Ali, M.M., A.A Mageed and M. Heikal. 2007. Importance of aquatic macrophyte for invertebrate diversity in large subtropical reservoir. Limnologica 37:155169.

    • Search Google Scholar
    • Export Citation
  • Bärlocher, F. , 1997. Pitfalls of traditional techniques when studying decomposition of vascular plant remains in aquatic habitats. Limnetica 13(2):111.

    • Search Google Scholar
    • Export Citation
  • Battle, J.M. and T.B. Mihuc. 2000. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia 418:123136.

    • Search Google Scholar
    • Export Citation
  • Bedford, A.P. 2004. A modified litter bag design for use in lentic habitats. Hydrobiologia 529:187193.

  • Berg H.B. 1995. Larval food and feeding behaviour. In: Armitage P.D., P.S. Cranston and L.C.V. Pinder (eds), The Chironomidae: the biology and ecology of non-biting midges, Chapman and Hall, London, pp.136168.

    • Search Google Scholar
    • Export Citation
  • Bianchini Jr., I, R.H. Silva, M.B. Cunha-Santino and R.S. Panhota. 2010. Aerobic and anaerobic decomposition of Pistia stratiotes leachates from a tropical eutrophic reservoir (Barra Bonita, SP, Brazil). Braz. J. Biol. 70(3):559568.

    • Search Google Scholar
    • Export Citation
  • Bianchini Jr., I, M.B. Cunha-Santino, J.U. Ribeiro and D.G.B. Penteado. 2014. Implication of anaerobic and aerobic decomposition of Eichhornia azurea (Sw.) Kunth. on the carbon cycling in a subtropical reservoir. Braz. J. Biol. 74(1):100110.

    • Search Google Scholar
    • Export Citation
  • Boyd, C.E. and C.P. Goodyear. 1971. Nutritive quality of food in ecological systems. Archiv für Hydrobiologie 69(2):256270.

  • Carvalho, C., L.U. Hepp, C. Palma-Silva and E.F. Albertoni. 2015. Decomposition of macrophytes in a shallow subtropical lake. Limnologica 53:19.

    • Search Google Scholar
    • Export Citation
  • Carvalho, P., S.M. Thomaz and L.M. Bini. 2005. Effects of temperature on decomposition of a potential nuisance species: the submerged aquatic macrophytes Egeria najas Planchon (Hydrocharitaceae). Braz. J. Biol. 65(1):5160.

    • Search Google Scholar
    • Export Citation
  • Clarke, K.R. and R.N. Gorley. 2006. PRIMER v6:User Manual/Tutorial. Plymouth: PRIMER-E.

  • Clarke, K. and R. M. Warwick. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth: PRIMER-E.

  • Cunha-Santino, M.B., I. Bianchini Jr. and M.H. Okawa. 2010. The fate of Eichhornia azurea (Sw.) Kunth. detritus within a tropical reservoir. Acta Limnologica Brasiliensia 22(2):109121.

    • Search Google Scholar
    • Export Citation
  • Dahroug, Z., N.F. Santana and N.F. Pagioro. 2016. Eichhornia azurea decomposition and the bacterial dynamic: an experimental research. Braz. J. Microbiol. 47:279286.

    • Search Google Scholar
    • Export Citation
  • Debastiani-Júnior, J.R., L.M.A. Elmoor-Loureiro and M.G. Nogueira. 2016. Habitat architecture influencing microcrustaceans composition: a case study on freshwater Cladocera (Crustacea Branchiopoda). Braz. J. Biol. 76(1):93100.

    • Search Google Scholar
    • Export Citation
  • Domínguez, E. and H.R. Fernández. 2009. Macroinvertebrados bentónicos sudamericanos. Fund. Miguel Lillo: Tucumán, Argentina.

  • Galizzi M.C. , F. Zilli and M. Marchese. 2012. Diet and functional feeding groups of Chironomidae (Diptera) in the Middle Paraná River floodplain (Argentina). Iheringia 102(2):117121.

    • Search Google Scholar
    • Export Citation
  • Gaur, S., P.K. Singhal and S.K. Hasija. 1992. Relative contributions of bacteria and fungi to water hyacinth decomposition. Aquatic Bot. 43:115.

    • Search Google Scholar
    • Export Citation
  • Gessner, M.O. 2005. Ergosterol as a measure of fungal biomass. In: Graça, M.A.S., F. Bärlocher and M.O. Gessner (eds.), Methods to Study Litter Decomposition: A Pratical Guide. Springer, Dordrecht, pp. 189195.

    • Search Google Scholar
    • Export Citation
  • Gessner, M.O., C.M. Swan, C.K. Dang, B.G. McKie, R.D. Bardgett, D.H. Wall and S. Hättenschwiler. 2010. Diversity meets decomposition. Trends Ecol. Evol. 25(6):372380.

    • Search Google Scholar
    • Export Citation
  • Golterman, K.L., R.S., Clymo and M.A.M., Ohmstad. 1978. Methods for Physical and Chemical Analysis of Freshwaters. Oxford: Blackwell Scientific Publications.

    • Search Google Scholar
    • Export Citation
  • Gonçalves, J.F. Jr., F.A. Esteves and M. Callisto. 2003. Chironomids colonization on Nymphaea ampla L. detritus during a degradative ecological succession experiment in a Brazilian coastal lagoon. Acta Limnologica Brasiliensia 15(2):2127.

    • Search Google Scholar
    • Export Citation
  • Gonçalves, J.F. Jr., J.S. França, A.O. Medeiros, C.A. Rosa and M. Callisto. 2006. Leaf breakdown in a Tropical Stream. Internat. Rev. Hydrobiol. 91(2):164177.

    • Search Google Scholar
    • Export Citation
  • Gonçalves, J.F. Jr., M.A.S. Graça, and M. Callisto. 2007. Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biol. 52:14401451.

    • Search Google Scholar
    • Export Citation
  • Gonçalves, J.F. Jr., A.M. Santos and F.A. Esteves. 2004. The influence of the chemic Jr.al composition of Typha domingensis and Nymphaea ampla detritus on invertebrate colonization during decomposition in a Brazilian coastal lagoon. Hydrobiologia 527:125137.

    • Search Google Scholar
    • Export Citation
  • Graça, M.A.S., F. Bärlocher and M.O. Gessner. 2005. Methods to Study Litter Decomposition: a Practical Guide. Springer, Dordrecht.

  • Graça, M.A.S. and C. Canhoto. 2006. Leaf litter processing in low order streams. Limnetica 25(1–2):110.

  • Grattan, R.M. and K. Suberkropp. 2001. Effects of nutrient enrichment on yellow poplar leaf decomposition and fungal activity in streams. J. North Am. Benthol. Soc. 20(1):3343.

    • Search Google Scholar
    • Export Citation
  • Gulis, V. and K. Suberkropp. 2003. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquat. Microbial Ecol. 30(2):149157.

    • Search Google Scholar
    • Export Citation
  • Gulis, V. and K. Suberkropp. 2007. Fungi: biomass, production, and sporulation of aquatic hyphomycetes. In: Hauer, F.R. and G.A. Lamberti (eds.), Methods in Stream Ecology. Academic Press, San Diego. pp. 311325.

    • Search Google Scholar
    • Export Citation
  • Güsewell, S. and M.O. Gessner. 2009. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct. Ecol. 23:211219.

    • Search Google Scholar
    • Export Citation
  • Handa, T., R. Aerts, F. Berendse, M.P. Berg, A. Bruder, O. Butenschoen, E. Chauvet, M.O. Gessner, J. Jabiol, M. Makkonen, B.G. McKie, B. Malmqvist, E.T.H.M. Peeters, S. Scheu, B. Schmid, J.v. Ruijven, V.C.A. Vos and S. Hättenschwiler. 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218234.

    • Search Google Scholar
    • Export Citation
  • Henriques-Oliveira A.L. , J.L. Nessimian and L.F.M. Dorvillé. 2003. Feeding habits of Chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Braz. J. Biol. 63(2):269281.

    • Search Google Scholar
    • Export Citation
  • Henry, R. , 2005. The connectivity of the Paranapanema River with two lateral lakes in its mouth zone into the Jurumirim reservoir. Acta Limnologica Brasiliensia 17(1):5769.

    • Search Google Scholar
    • Export Citation
  • Henry-Silva, G.G., M.M. Pezzato, R.F. Benassi and A.F.M. Camargo. 2001. Chemical composition of five species of aquatic macrophytes from lotic ecosystems of the southern coast of the state of São Paulo (Brazil). Acta Limnologica Brasiliensia 13(2):1117.

    • Search Google Scholar
    • Export Citation
  • Lancaster, J. and B.J. Downes. 2013. Aquatic Entomology. Oxford, United Kingdom.

  • Levenspiel, O. 1974. Engenharia das reações químicas. Edgard Blücher, São Paulo.

  • Mackereth, F.I.H., J. Heron and J.F. Talling. 1978. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association, London.

    • Search Google Scholar
    • Export Citation
  • Martins, R.T., L.S. Silveira and R.G. Alves. 2011. Colonization by oligochaetes (Annelida: Clitellata) in decomposing leaves of Eichhornia azurea (SW.) Kunth (Pontederiaceae) in a neotropical lentic system. Annales de Limnologie – Internat. J. Limnol. 47:339346.

    • Search Google Scholar
    • Export Citation
  • Mille-Lindblom, C. and L.J. Tranvik. 2003. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microbial Ecol. 45:173182.

    • Search Google Scholar
    • Export Citation
  • Mille-Lindblom, C., H. Fischer and L.J. Tranvik. 2006. Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 113:233242.

    • Search Google Scholar
    • Export Citation
  • Mormul, R.P., L.A. Vieira, S. Pressinatte Jr., A. Monkolski and A.M. Santos. 2006. Sucessão de invertebrados durante o processo de decomposição de duas plantas aquáticas (Eichhornia azurea e Polygonum ferrugineum). Acta Scientiarum 28(2):109115.

    • Search Google Scholar
    • Export Citation
  • Olson, J.S. , 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322331.

  • Padial, A.A. and S.M. Thomaz. 2006. Effects of flooding regime upon the decomposition of Eichhornia azurea (Sw.) Kunth measured on a tropical, flow-regulated floodplain (Paraná River, Brazil). River Res. Appl. 22:791801.

    • Search Google Scholar
    • Export Citation
  • Pagioro, T.A. and S.M. Thomaz. 1998. Loss of weight and concentration of carbon, nitrogen, and phosphorus during decomposition of Eichhornia azurea in the floodplain of the upper Paraná river, Brazil. Revista Brasileira de Biologia 58(4):603608.

    • Search Google Scholar
    • Export Citation
  • Pagioro T.A. and S.M. Thomaz. 1999. Decomposition of Eichhornia azurea from limnologically different environments of the Upper Paraná River floodplain. Hydrobiologia 411:45-51.

    • Search Google Scholar
    • Export Citation
  • Poi, A.S.G., M.E. Galassi, R.P. Carnevali and L.I. Gallardo. 2017. Leaf litter and invertebrate colonization: the role of macro consumers in a subtropical wetland (Corrientes, Argentina). Wetlands 37(1):135143.

    • Search Google Scholar
    • Export Citation
  • Press, W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery. 2007. Numerical Recipes, the Art of Scientific Computing. Cambridge University Press, New York.

    • Search Google Scholar
    • Export Citation
  • Quintão, J.M.B., R.S. Rezende and J.F. Gonçalves. 2013. Microbial effects in leaf breakdown in tropical reservoirs of different trophic status. Freshwater Sc. 32(3):933950.

    • Search Google Scholar
    • Export Citation
  • Rantala, M.V., T.P. Luoto and L. Nevalainen. 2016. Temperature controls organic carbon sequestration in a subartic lake. Scientific Reports 6:111.

    • Search Google Scholar
    • Export Citation
  • Romaní, A.M., H. Fischer, C. Mille-Lindblom and L.J. Tranvik. 2006. Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87(10):25592569.

    • Search Google Scholar
    • Export Citation
  • Saito V.S. and A.A. Fonseca-Gessner. 2014. Taxonomic composition and feeding habitats of Chironomidae in Cerrado streams (Southeast Brazil): impacts of land use changes. Acta Limnologica Brasiliensia 26(1):3546.

    • Search Google Scholar
    • Export Citation
  • Sales, M.A., J.F. Gonçalves, J.S. Dahora and A.O. Medeiros. 2015. Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian Cerrado: a 1-year study. Microbial Ecol. 69:8494.

    • Search Google Scholar
    • Export Citation
  • Sangiorgio, F., M. Pinna and A. Basset. 2004. Inter- and intra-habitat variability of plant detritus decomposition in a transitional environment (Lake Alimini, Adriatic Sea). Chemistry and Ecology 20:353366.

    • Search Google Scholar
    • Export Citation
  • Sangiorgio, F., S. Dragan, I. Rosati, L. Teodorof, M. Staras, L. Georgescu and Basset, A. 2008. Decomposition of reed swamp detritus in the Danube Delta: a case study of four eutrophic systems. Transitional Waters Bulletin 2(4):2627.

    • Search Google Scholar
    • Export Citation
  • Sangiorgio, F., D.S. Glazier, G. Mancinelli and A. Basset. 2010. How can habitat size influence leaf litter decomposition in five mid-Appalachian springs (USA)? The importance of the structure of the detritivorous guild. Hydrobiologia 654:227236.

    • Search Google Scholar
    • Export Citation
  • Silva, F.L., H.R.N. Oliveira, S.C. Escarpinati, A.A. Fonseca-Gessner and M.C. Paula. 2011. Colonization of leaf litter of two aquatic macrophytes, Mayaca fluviatilis Aublet and Salvinia auriculata Aublet by aquatic macroinvertebrates in a tropical reservoir. Revista Ambiente and Água 6(1):3039.

    • Search Google Scholar
    • Export Citation
  • Silveira L.S. , R.T. Martins, G.A. Silveira, R.M. Grazul, D.P. Lobo and R.G. Alves. 2013. Colonization by Chironomidae larvae in decomposition leaves of Eichhornia azurea in a lentic system in southeastern Brazil. J. Insect Sci. 13(20):113.

    • Search Google Scholar
    • Export Citation
  • Song, N., Z.S. Yan, H.Y. Cai and H.L. Jiang. 2013. Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake. Hydrobiologia 714:131144.

    • Search Google Scholar
    • Export Citation
  • Strickland, J.D.H. and T.R.A. Parsons. 1960. Manual of seawater analysis. Bull. Fish. Res. Board Can. 125:1185.

  • Stripari, N. de L. and R. Henry. 2002. The invertebrate colonization during decomposition of Eichhornia azurea Kunth in a lateral lake in the mouth zone of Paranapanema River into Jurumirim Reservoir (São Paulo, Brazil). Braz. J. Biol. 62(2):293310.

    • Search Google Scholar
    • Export Citation
  • Taylor, B.R. 1998. Air-drying depresses rates of leaf litter decomposition. Soil Biol. Biochem. 30(3):403412.

  • Taylor, B.R. and F. Bärlocher. 1996. Variable effects of air-drying on leaching losses from tree leaf litter. Hydrobiologia 325:173182.

    • Search Google Scholar
    • Export Citation
  • Teixeira, C. and M.B., Kutner. 1962. Plankton studies in a mangrove environment. I – First assessment of standing stock and ecological factors. Boletim do Instituto Oceanográfico 12:101124.

  • Webster, J.R. and E.F. Benfield. 1986. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst. 17:567594.

  • Wetzel, R.G. , 1975. Limnology. Saunders, Philadelphia.

  • Wong, M.K.M, T-K. Goh, I.J. Hodgkiss, K.D. Hyde, V.M. Ranghoo, C.K.M. Tsui, W-H. Ho, W.S.W. Wong and T.K. Yuen. 1998. Role of fungi in freshwater ecosystems. Biodivers. Conserv. 7:11871206.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)