View More View Less
  • 1 GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany Christian-Albrechts University Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
  • 2 Aristotle University, 541245 Thessaloniki, Greece
Restricted access

Food chains in the pelagic zones of oceans and lakes are longer than in terrestrial ecosystems. The perception of the pelagic food web has become increasingly complex by progressing from a linear food chain (phytoplankton – crustacean zooplankton – planktivorous fish – predatory fish) to a food web because of an increasing appreciation of microbial trophic pathways, side-tracks by gelatinous zooplankton and a high prevalence of omnivory. The range of predator:prey size ratios by far exceeds the traditionally assumed range of 10:1 to 100:1, from almost equal length to 105:1. The size ratios between primary consumers and top predators are 3½ orders of magnitude bigger in pelagic than in terrestrial food webs. Comparisons between different pelagic ecosystems support ecosystem size as an important factor regulating the maximal trophic level, while energy limitation of the number of trophic levels is less well supported. An almost 1:1 relationship between ingestion by predators and prey mortality and a better chemical match between primary producer and herbivore biomass are further distinctive features of the pelagic food web whose role in explaining the higher number of trophic levels in pelagic systems needs further examination.

  • Aberle, N., A.M. Malzahn, Lewandowska, A. and U. Sommer. 2014. Some like it hot – the protozooplankton – copepod link in a warming ocean. Mar. Ecol. Progr. Ser. 519:103112.

    • Search Google Scholar
    • Export Citation
  • Azam, F., T. Fenchel. J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad. 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Progr. Ser. 10:257263.

    • Search Google Scholar
    • Export Citation
  • Baird, D. and R.E. Ulanowicz. 1989. The seasonal dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 59:329364.

  • Båmstedt, U., M.B. Martinussen and S. Matsakis. 1994. Trophodynamics of the 2 scyphozoan jellyfishes, Aurelia aurita and Cyanea capillata in western Norway. ICES J. Mar. Sci. 51:369382.

    • Search Google Scholar
    • Export Citation
  • Basedow, S.L., N.A.L. de Silva, A. Bode and J. van Beusekom. 2016. The trophic positions of mesozooplankton across the North Atlantic: estimates derived from biovolume theories and stable isotope analysis. J. Plankton Res. 38:13641378.

    • Search Google Scholar
    • Export Citation
  • Bedo, A., L. Acuña, D. Robin and R. Harris. 1993. Grazing in the micron and the sub-micron particle size range: the case of Oikopleura dioica (Appendicularia). Bull. Mar. Sci. 53:214.

    • Search Google Scholar
    • Export Citation
  • Bird, D.F. and J. Kalff. 1987. Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon. Limnol Oceanogr. 32:277284.

    • Search Google Scholar
    • Export Citation
  • Boenigk, J. and H. Arndt. 2002. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van Leeuwenhoek 81:465480.

    • Search Google Scholar
    • Export Citation
  • Brandt, S.M. and M.A. Sleigh. 2000. The quantitative occurrence of different taxa of heterotrophic flagellates in Southampton Water, U.K. Estuar. Coast. Shelf Sci. 51:91102.

    • Search Google Scholar
    • Export Citation
  • Briand, F. and J.E. Cohen. 1987. Environmental correlates of food chain length. Science 238:956960.

  • Calbet, A., M.R. Landry and S. Nunnery. 2001. Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific. Aqu. Microb. Ecol. 23:283292.

    • Search Google Scholar
    • Export Citation
  • Calbet, A. and M. Landry. 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49:5157.

    • Search Google Scholar
    • Export Citation
  • Caron, D.A., H.G. Dam, P. Kremer, E.J. Lessard EJ, L.P. Madin, T.C. Malone, J.M. Napp, E.R. Peele, M.R. Roman and M.J. Youngbluth. 1995. The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res. I 42:943972.

    • Search Google Scholar
    • Export Citation
  • Cohen, J.E., S.L. Pimm, P. Yodzis and J. Saldana. 1993. Body size of animal predators and animal prey in food webs. J. Anim. Ecol. 62:6778.

    • Search Google Scholar
    • Export Citation
  • Deibel, D. 1982. Laboratory-measured grazing and ingestion rates of the salp, Thalia democratica Forskal, and the doliolid, Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J. Plankton Res. 4: 189201.

    • Search Google Scholar
    • Export Citation
  • Elser, J.J., W.F. Fagan, R.F. Denno, D.R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S.S. Kilham, E. McCauley, K.L. Schulz, E.H. Siemann and R.W. Sterner. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578580.

    • Search Google Scholar
    • Export Citation
  • Elton, C.S. 1927. Animal Ecology. Macmillan, New York.

  • Fernández, D., Á. >López-Urrutia, A. Fernández, J-L. Acuña and R. Harris R. 2004. Retention efficiency of 0.2 to 6 μm particles by the appendicularians Oikopleura dioica and Fritillaria borealis. Mar. Ecol. Prog. Ser. 266:89101.

    • Search Google Scholar
    • Export Citation
  • Goldman, J.C., J.J. McCarthy and D.G. Peavey. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210215.

    • Search Google Scholar
    • Export Citation
  • Hairston Jr., N.G. and N.G. Hairston Sr. 1993. Cause-effect relationships in energy flow, trophic structure and interspecific interactions. Am. Nat. 142 379411.

    • Search Google Scholar
    • Export Citation
  • Hairston Jr., N.G and N.G. Hairston Sr. 1997. Does food web complexity eliminate trophic level dynamics? Am. Nat. 149:10011007.

  • Hansen, B., P-K. Bjørnsen and P.J. Hansen. 1994. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39:395403.

    • Search Google Scholar
    • Export Citation
  • Hansen, P.J. 2011. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J. Eukaryot. Microbiol. 58:203214.

    • Search Google Scholar
    • Export Citation
  • Hansen, T., A. Burmeister and U. Sommer. 2009. Simultaneous δ15 N, δ13 C and δ34 S abundance measurements of low biomasses using a technical advanced high sensitivity elemental analyzer connected to an isotope ratio mass spectrometer. Rap. Comm. Mass Spectrometry 23:33873393.

    • Search Google Scholar
    • Export Citation
  • Holt, R.D. and G.A. Polis. 1997. A theoretical framework for intra-guild predation. Am. Nat. 149:745764.

  • Hunt, B. P.V., V. Allain, C. Menkes, A. Lorrain, B. Graham, M. Rodier, M. Pagano and F. Carlotti. 2015. A coupled stable isotope-size spectrum approach to understanding pelagic food-web dynamics: a case study from the southwest sub-tropical Pacific. Deep Sea Res. Part II 113:208224

    • Search Google Scholar
    • Export Citation
  • Hussey, N.E., M.A. MacNeill, B.C. McMeans, J.A. Olin, S.F.J. Dudley, G. Cliff, S.P. Wintner, S.T. Fennesy and A.T. Fisk. 2014. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17:239250.

    • Search Google Scholar
    • Export Citation
  • Ismar, S.M.H., J. Kottmann and U. Sommer. 2018. First genetic quantification of sex- and stage-specific feeding in the ubiquitous copepod Acartia tonsa. Mar. Biol. Submitted.

    • Search Google Scholar
    • Export Citation
  • Iverson, R.L. 1990. Control of marine fish production. Limnol. Oceanogr. 35:15931594.

  • Jones, R.I. 2000. Mixotrophy in planktonic protist. An overview. Freshwater Biol. 45:219226.

  • Katechakis, A., H. Stibor, U. Sommer and T. Hansen. 2004. Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean). J. Plankton Res. 26:589603.

    • Search Google Scholar
    • Export Citation
  • Leaper, R. and M. Huxham. 2002. Size constraints in a real food web: predator, parasite and prey body-size relationships. Oikos 99:443456.

    • Search Google Scholar
    • Export Citation
  • Lindeman, R.L. 1942. The trophodynamic aspect of ecology. Ecology 23:399417.

  • Marañón, E. 2015. Cell size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7:241264.

    • Search Google Scholar
    • Export Citation
  • Marañón, E., P. Cermeño, M. Latasa and R.D. Tadonleke. 2015. Resource supply alone explains the variability of marine phytoplankton size structure. Limnol. Oceanogr. 60:18481854.

    • Search Google Scholar
    • Export Citation
  • McCann, K. and A. Hastings. 1997. Re-evaluating the omnivory-stability relationship in food webs. Proc. R. Soc. Lond. Ser. B. 264:186193.

    • Search Google Scholar
    • Export Citation
  • McGarvey, R., N. Dowling and J.E. Cohen. 2016. Longer food chains in pelagic ecosystems. Trophic energetics of animal body size and metabolic efficiency. Am. Nat. 188:7686.

    • Search Google Scholar
    • Export Citation
  • Miller, R.J., K.H. Mann and D.J. Scarrat. 1971. Potential primary production of a lobster-seaweed community in eastern Canada. J. Fish. Res. Bd. Can. 28:17331738.

    • Search Google Scholar
    • Export Citation
  • Moustaka-Gouni, M., K.A. Kormas, M. Scotti, E. Vardaka and U. Sommer. 2016. Warming and acidification effects on planktonic heterotrophic pico- and nanoflagellates in a mesocosm experiment. Protist 167:389410.

    • Search Google Scholar
    • Export Citation
  • Pimm, S.L. 1980. Properties of food webs. Ecology 61:219225.

  • Pimm, S.L. 1982. Food Webs. Chapman and Hall, London.

  • Polis, G.A. and D.R. Strong. 1996. Food web complexity and community dynamics. Am. Nat. 147:813846.

  • Pomeroy, L.R. 1974. The ocean foodweb, a changing paradigm. BioScience 24:499504.

  • Post, D.M., M.L. Pace ML and N.G. Hairston Jr. 2000. Ecosystem size determines food-chain length in lakes. Nature 405:10471049.

  • Samuelsson, K. and A. Andersson. 2003. Predation limitation in the pelagic microbial food web in an oligotrophic aquatic system. Aquat. Microb. Ecol. 30:239250.

    • Search Google Scholar
    • Export Citation
  • Schoener, T.W. 1989. Food webs from the small to the large. Ecology 70:15591589.

  • Scotti, M., S. Allesina, C. Bondavalli, A. Bodini and L.G. Abarca-Arenas. 2006. Effective trophic positions in ecological acyclic networks. Ecol. Model. 198:495505.

    • Search Google Scholar
    • Export Citation
  • Scotti, M., C. Bondavalli, A. Bodini and S. Allesina. 2009. Using trophic hierarchy to understand food web structure. Oikos 118:16951702.

    • Search Google Scholar
    • Export Citation
  • Sherr, E.B. and B.F. Sherr. 2002. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81:293308.

    • Search Google Scholar
    • Export Citation
  • Shurin, J.B., D.S. Gruner and H. Hillebrand. 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc. R. Soc. B. 273:19.

    • Search Google Scholar
    • Export Citation
  • Sieburth, J.M., V. Smetacek, V. and J. Lenz. 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23:12561263.

    • Search Google Scholar
    • Export Citation
  • Sommer, U., E. Charalampous, S. Genitsaris and M. Moustaka-Gouni. 2017. Costs, benefits and taxonomic distribution of phytoplankton body size. J. Plankton Res. 39:494508.

    • Search Google Scholar
    • Export Citation
  • Sommer, U., T. Hansen, O. Blum, N. Holzner, O. Vadstein and H. Stibor. 2005. Copepod and microzooplankton grazing n mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N-influence on zooplankton trophic level. Oecologia 142:274283.

    • Search Google Scholar
    • Export Citation
  • Sommer, U. and F. Sommer. 2006. Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147:183194.

    • Search Google Scholar
    • Export Citation
  • Sommer, U., F. Sommer, H. Feuchtmayr and T. Hansen. 2004. The influence of mesozooplankton on phytoplankton nutrient limitation: A mesocosm study with northeast Atlantic phytoplankton. Protist 155:295304.

    • Search Google Scholar
    • Export Citation
  • Sommer, U., H. Stibor, A. Katechakis, F. Sommer and T. Hansen. 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production:primary production. Hydrobiologia 484:1120.

    • Search Google Scholar
    • Export Citation
  • Stibor, H. and U. Sommer. 2003. Mixotrophy of a photosynthetic flagellate viewed from an optimal foraging perspective. Protist 154:9198.

    • Search Google Scholar
    • Export Citation
  • Tait, R.V. 1981. Elements of Marine Ecology. 3rd ed. Butterworths, London.

  • Thingstad, T.F., H. Havskum, K. Garde and B. Riemann. 1996. On the strategy of “eating your competitor“: a mathematical analysis of algal mixotrophy. Ecology 77:21082118.

    • Search Google Scholar
    • Export Citation
  • Thompson, R.M., M. Hemberg, B.M. Starzomski and J.B. Shurin. 2007. Trophic levels and trophic tangles: the prevalence of omnivory in real food webs. Ecology 88:612617.

    • Search Google Scholar
    • Export Citation
  • Vander Zanden, M.J., B.J. Shuter, N. Lester and J.B. Rasmussen. 1999. Patterns of food chain length in lakes: A stable isotope study. Am. Nat. 154:406416.

    • Search Google Scholar
    • Export Citation
  • Whittaker, R.H. 1975. Communities and Ecosystems. 2nd ed., Macmillan, New York.