View More View Less
  • 1 University of Almeria, Almeria, Spain
  • 2 University of Almeria, Almeria, Spain
  • 3 University of Salamanca, Salamanca, Spain
  • 4 Evolutionary Systems Research Group, Hungary
Restricted access

Population dynamics models suggest that the over-all level of resource productivity plays an important role in community dynamics. One such factor of resource productivity is the quality of the host plant, which can determine the effectiveness of entomophagous (predatory and parasitoid) species by altering the growth rate of the phytophagous population via effects on fecundity, survival, and rate of development. These effects have been studied in relation to the distribution of host plants and their physiological state. However, few studies have considered the differences among plant cultivars. The objective of this study was to identify a continuous-time dynamic model, to describe the effects of different tomato cultivars on a one predatortwo prey model. The experiment was carried out under greenhouse conditions using ten tomato cultivars, with the predatory species Nesidiocoris tenuis (Reuter) (Insecta, Hemiptera, Miridae) and two prey species: the phytophagous species Bemisia tabaci (Gennadius) (Insecta, Hemiptera, Aleyrodidae) and the parasitoid species Trichogramma achaeae (Nagaraja & Nagarkatti) (Insecta, Hymenoptera, Trichogrammatidae); the latter was used as the intraguild-prey. Using the software SIMFIT, we found that a three-dimensional Lotka-Volterra type system could be well fitted to the data, estimating the phytophagous species´ growth rate, the parasitoid and predator mortality rates, the predation and parasitism rates, and the parasitoid emergence rate according to the cultivar type. The results showed an important effect of the host plant quality, by cultivar, on intraguild predation, resulting in important changes in the dynamics of phytophagous populations. These results are also discussed in relation to their importance in the biological control of pest species in greenhouse crops.

  • Abrams, P.A. 2012. Predator-prey models. In: Hastings, A. and Gross, L. (eds.), Encyclopedia of Theoretical Ecology. University of California Press, Berkeley, USA. pp. 587594.

    • Search Google Scholar
    • Export Citation
  • Banga, J.R., Balsa-Canto, E., Moles,C.G. and Alonso,A.A. 2005. Dynamic optimization of bioprocesses: efficient and robust numerical strategies. J. Biotechnol. 117:407419.

    • Search Google Scholar
    • Export Citation
  • Bardsley W.G. (2017) “SIMFIT statistical package”, version 7.3.0. http://www.simfit.org.uk.

  • Bergman, J.M and Tingey, W.M. 1979. Aspects of interaction between plant genotypes and biological control. Bull. Entomol. Soc. Am. 25:275279.

    • Search Google Scholar
    • Export Citation
  • Berryman, A.A. 2004. The theoretical foundations of biological control. In: Hawkins, B.A. and Cornell, H.V. (eds.), Theoretical Approaches to Biological Control. Cambridge University Press, Cambridge, UK. pp. 321.

    • Search Google Scholar
    • Export Citation
  • Bottrell, D.G., Barbosa, P. and Gould, F. 1998. Manipulating natural enemies by plant variety selection and modification: A realistic strategy? Annu. Rev. Entomol. 43:347367.

    • Search Google Scholar
    • Export Citation
  • Cabello, T. 1985. Especies de Trichogramma (Hym.: Tricho-grammatidae) parasitas de Heliothis armígera (Lep.: Noctuidae) en Andalucia. Ph.D. Diss., Universidad de Cordoba, Cordoba, ES.

    • Search Google Scholar
    • Export Citation
  • Cabello, T., Bonfil, F., Gallego, J.R., Fernandez, F.J., Gamez, M. and Garay, J. 2015. Can interactions between and omnivorous hemipteran and an egg parasitoid limit the level of biological control for the tomato pinworm? Environ. Entomol. 44:1226.

    • Search Google Scholar
    • Export Citation
  • Cabello, T., Gallego, J.R., Vila, E., Soler, A., Pino del M., Carnero, A., Hernandez-Suarez, E. and Polaszek, A. 2009. Biological control of the South American tomato pinworm, Tuta absoluta (Lep.: Gelechiidae), with releases of Trichogramma achaeae (Hym.: Trichogrammatidae) in tomato greenhouses of Spain. IOBC WPRS Bull. 49:225230.

    • Search Google Scholar
    • Export Citation
  • Cabello, T., Gallego, J.R., Fernandez, F.J., Gamez, M., Vila, E., Pino, M. and Hernandez, E. 2012. Biological control strategies for the South American tomato moth in greenhouse tomatoes. J. Econ. Entomol. 105:20852096.

    • Search Google Scholar
    • Export Citation
  • Calvo, F.J., Bolckmans, K. and Belda, J.E. 2012. Release rate for a pre-plant application of Nesidiocoris tenuis for Bemisia tabaci control in tomato. BioControl 57:809817.

    • Search Google Scholar
    • Export Citation
  • Castañe, C., Alomar, O., Goula, M. and Gabarra, R. 2004. Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii. Biol. Control 30:591597.

    • Search Google Scholar
    • Export Citation
  • Chen, B.M., Lin, Z. and Shamesh, Y. 2004. Linear Systems Theory. A Structural Decomposition Approach. Birkhauser, Boston.

  • Gallego, J.R., Lopez, I., Gamez, M., Cabello, T., Varga, Z. and Garay, J. 2013. Simulation model applied to biological pest control by entomophagous species in commercial tomato greenhouses. Hung. Agric. Eng. 25:6770.

    • Search Google Scholar
    • Export Citation
  • Hawkins, B.A. and Cornell, H.V. (eds.) 2004. Theoretical Approaches to Biological Control. Cambridge Univ. Press, Cambridge, UK.

  • Hirmajer, T., Balsa-Canto, E. and Banga, J. 2009. DOTcvpSB, a software toolbox for dynamic optimization in systems biology. BMC Bioinformatics 10:199.

    • Search Google Scholar
    • Export Citation
  • Holt, R.D. and Polis, G.A. 1997. A theoretical framework for intraguild predation. Am. Nat. 149:745764.

  • IBM. 2014. IBM SPSS Statistics for Windows, Version 23.0 IBM Corp. Armonk, IBM Corp., NY.

  • Janssen, A., Pallini, A., Venzon, M and Sabelis, M.W. 1998. Behaviour and indirect interactions in food webs of plant-inhabiting arthropods. Exp. Appl. Acarol. 22:497521.

    • Search Google Scholar
    • Export Citation
  • Messelink, J.G., Bloemhard, C.M.J., Sabelis, M.W. and Janssen, A. 2013. Biological control of aphids in the presence of thrips and their enemies. BioControl 58:4555.

    • Search Google Scholar
    • Export Citation
  • Mills, N. 2006. Interspecific competition among natural enemies and single versus multiple introductions in biological control. In: Brodeur, J. and Boivin, G. (eds.), Trophic and Guild Interactions in Biological Control. Springer, Dordrecht, NL. pp. 191219.

    • Search Google Scholar
    • Export Citation
  • Mumford, J.D. and Norton, G.A. 1984. Economics of decision making in pest management. Ann. Rev. Entomol. 29:157174.

  • Oliveira, L., Durao, A.C., Fontes, J., Roja, I.S. and Tavares, J. 2017. Potential of Trichogramma achaeae (Hym.: Trichogrammatidae) in biological bontrol of Tuta absoluta (Lep.: Gelechiidae) in Azorean greenhouse tomato crops. J. Econ. Entomol. 110:20102015.

    • Search Google Scholar
    • Export Citation
  • Pedigo, L.P., Hutchins, S.H. and Higley, L.G. 1986. Economic injury levels in theory and practice. Ann. Rev. Entomol. 31:341368.

  • Polaszek, A., Rugman-Jones, P.F., Stouthamer, R., Hernandez-Suarez, E., Cabello, T. and Pino, M. del. 2012. Molecular and morphological diagnoses of Canary Islands Trichogramma species for biocontrol of Chrysodeixis chalcites (Lep. Noctuidae) and Tuta absoluta (Lep. Gelechiidae). BioControl 57:2135.

    • Search Google Scholar
    • Export Citation
  • Poston, F.L., Pedigo, L.P. and Welch, S.M. 1983. Economic injury levels: reality and practicality. Bull. Entomol. Soc. Am. 29:4953.

  • Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N. and Weis, A.E. 1980. Influence of plant on interactions between insect herbivores and natural enemies. Ann. Rev. Ecol. Syst. 11:4165.

    • Search Google Scholar
    • Export Citation
  • Rosenheim, J.A. and Harmon, J.P. 2006. The influence of intraguild predation on the suppression of a shared prey population: an empirical reassessment, In: Brodeur, J. and Boivin, G. (eds.), Trophic and Guild Interactions in Biological Control. Springer, Dordrecht, NL. pp. 120.

    • Search Google Scholar
    • Export Citation
  • Ruppel, R.F. 1983. Cumulative insect-days as an index of crop protection. J. Econ. Entomol. 76:375377.

  • Sanchez, J.A. 2008. Zoophytophagy in the plantbug Nesidiocoris tenuis. Agric. For. Entomol. 10:7580.

  • Saphores, J.D.M. 2000. The economic threshold with a stochastic pest population: a real options approach. Amer. J. Agr. Econ. 82:541555.

    • Search Google Scholar
    • Export Citation
  • Shoemaker, C. 1973. Optimization of agricultural pest management III: results and extensions of a model. Math. Biosci. 18:122.

  • Smith, C.M. 2005. Plant Resistance to Arthropods: Molecular and Conventional Approaches. Springer, Dordrecht, NL.

  • Tang, S. and Cheke, R.A., 2008. Models for integrated pest control and their biological implications. Math. Biosci. 215:115125.

  • Tang, S., Tang, G. and Cheke, R.A. 2010. Optimum timing of integrated pest management: modelling rates of pesticide applicacition and natural enemy releases. J. Theor. Biol. 264:623638.

    • Search Google Scholar
    • Export Citation
  • Varga, Z., Sebestyen, Z., Gamez, M., Cabello, T. and Attias, A. 2010. Models of applied population dynamics. Mech. Eng. Lett. 10:2236.

    • Search Google Scholar
    • Export Citation
  • Vila, E. and Cabello, T. 2014. Biosystems engineering applied to greenhouse pest control. In: Torres, I. and Guevara, R. (eds.), Biosystems Engineering: Biofactories for Food Production in the XXI Century. Springer, Berlin. pp. 99128.

    • Search Google Scholar
    • Export Citation
  • Vila, E., Parra, A., Beltran, D., Gallego, J.R., Fernandez, F.J. and Cabello, T. 2012. IPM strategies in tomato crops in Spanish greenhouses: Effects of cultivars and the integration of natural enemies. IOBC-WPRS Bull. 80:245251.

    • Search Google Scholar
    • Export Citation
  • Yano, E. 2005. Effects of intraguild predation and interspecific competition among biological control agents in augmentative biological control in greenhouses, In: Hoddle, M.S. (ed.), Second International Symposium on Biological Control of Arthropods, September 12–16, Davos, CH. USDA Forest Service (Publication FHTET-2005-08). pp. 523530.

    • Search Google Scholar
    • Export Citation