View More View Less
  • 1 KEFAG Ltd, Kecskemét, Hungary
  • 2 University of Sopron, Sopron, Hungary
  • 3 Eötvös Loránd University, Szombathely, Hungary
Restricted access

Artificial gap openings cause significant changes in vegetation structure (in every forest level), thereby greatly influencing arthropod communities. Our study compared the data of two common forest floor arthropod groups, ground beetles (Coleoptera: Carabidae) and ground-dwelling spiders (Araneae) from two artificial gaps situated in a turkey oak forest. Our surveys were carried out in the Gyöngyös-plain, in Hungary. Sampling of the arthropod communities was done with pitfall traps arranged in two 70 m long transects, along the longitudinal axis of the gaps, with 15 traps in each transect, 5 m from each other. We measured the quantity and quality of the deadwood lying around within a radius of 2.5 m of each trap. We observed that the species and numbers of spider specimens were higher in the inner parts of the transects (in the gaps), while the numbers of ground beetle specimens declined in the same traps. Furthermore, the Shannon and Simpson diversity values of the ground beetles were generally lower than those of the spiders. The ordinations showed a distinct influence of the gaps on the communities. The numbers of specimens of exclusively edge-associated species were also higher in the gaps. The correlation analysis indicated significant positive correlations between the number of ground beetles and spiders and the quantity of deadwood. In addition, there were significant negative correlations between the numbers of species of both groups and the rate of decay of deadwood.

  • Anderson, M.K. and Willis, T.J. 2003. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 82:511525.

    • Search Google Scholar
    • Export Citation
  • Bali, L., Szinetár, Cs., Andrési, D., Kámpel, J. and Tuba, K. 2016. Mesterségesen kialakított lékek talajközelben élő pókfaunájának (Araneae) vizsgálata. Növényvédelem 52:287297.

    • Search Google Scholar
    • Export Citation
  • Bali, L., Andrési, D., Szinetár, Cs. and Tuba, K. 2017. Léknyitás hatása talajközelben élő pókközösségre. In: Szabó P. (ed.), Kutatás-fejlesztés-innováció az agrárium szolgálatában. Mezőgazda lap- és könyvkiadó, Budapest. pp. 119128. [in Hungarian]

    • Search Google Scholar
    • Export Citation
  • Barber, H.S. 1931. Traps for cave-inhabiting insects. J. Elisha Mitchell Scientific Soc. 46:259266.

  • Beals, E.W. 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv. Ecol. Res. 14:155.

    • Search Google Scholar
    • Export Citation
  • Beck, J. and Schwanghart, W. 2010. Comparing measures of species diversity from incomplete inventories: an update. Meth. Ecol. Evol. 1:3844.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, J., Nilsson, S.G., Franc, A. and Menozzi, P. 2000. Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecol. Manage. 132:3950.

    • Search Google Scholar
    • Export Citation
  • Bray, J.R. and Curtis, J.T. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol. Monogr. 27:325349.

  • Borcard, D., Gillet, F. and Legendre, P. 2011. Numerical Ecology with R. Springer-Verlag New York. pp. 3153.

  • Brokaw, N.V.L. and Busing, R.T. 2000. Niche versus chance and tree diversity in forest gaps. Trends Ecol. Evol. 15:183188.

  • Buchar, J. and Růžička, V. 2002. Catalogue of Spiders of the Czech Republic. Peres Publishers, Praha.

  • Burgess, V.J., Kelly, D., Robertson, A.W. and Ladley, J.J. 2001. Positive effects of forest edges on plant reproduction: literature review and a case study of bee visitation to flowers Peraxilla tetrapetala (Loranthaceae). Plant Ecol. 153:347359.

    • Search Google Scholar
    • Export Citation
  • Cardoso, P., Silva, I., Oliveirade, N.G. and Serrano, A.R.M. 2004. Indicator taxa of spider (Araneae) diversity and their efficiency in conservation. Biol. Conserv. 120:517524.

    • Search Google Scholar
    • Export Citation
  • Castro, A., Wise, D.H., 2009. Influence of fine woody debris on spider diversity and community structure in forest leaf litter. Biol. Conserv. 18:37053731.

    • Search Google Scholar
    • Export Citation
  • Castro, A., Wise, D.H., 2010. Influence of fallen coarse woody debris on the diversity and community structure of forest-floor spiders (Arachnida: Araneae). Forest Ecol. Manage. 260:20882101.

    • Search Google Scholar
    • Export Citation
  • Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Austr. J. Ecol. 18:117143.

  • Clarke, K.R. Sommerfield, P.J. and Chapman, M.G. 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330:5580.

    • Search Google Scholar
    • Export Citation
  • Debnár, Zs, Magura T., Horváth, R., Nagy, D.D., Mizser, Sz., Demkó, A., Tajthi, B. and Tóthmérész, B. 2016. Group selection harvesting supports diversity of forest specialist epigaeic arthropods (Coleoptera: Carabidae; Arachnida: Araneae; Isopoda: Oniscidae). Periodicum Biologorum 118:311314.

    • Search Google Scholar
    • Export Citation
  • Elek, Z., Bérces, S., Szalkovszki, O. and Ódor, P. 2016. Hogyan segíthet az erdészeti gyakorlat megőrizni a talajfelszíni ragadozó ízeltlábúak diverzitását? In: Az erdőgazdálkodás hatása az erdők biológiai sokféleségére. Tanulmánygyűjtemény. Duna–Ipoly Nemzeti Park Igazgatóság, Budapest. pp. 203215. [in Hungarian]

    • Search Google Scholar
    • Export Citation
  • Fergusson, S.H. 2004. Influence of edge on predator-prey distribution and abundance. Acta Oecol. 25:111117.

  • Franklin, L.A. 1987. The complete exact null distribution of Spearman’s rho for n = 12 to 16. Proceedings of the 19th Symposium on the Interface between Computer Science and Statistics. pp. 337342.

    • Search Google Scholar
    • Export Citation
  • Gallé, R and Fehér, B. 2006. Edge effect on spider assemblages. Tiscia 35:3740.

  • Gálhidy, L. 2016. A lékek szerepe az erdőgazdálkodásban és az erdők természetvédelmi kezelésében. In: Korda, M. (ed.), Az erdőgazdálkodás hatása az erdők biológiai sokféleségére. Tanulmánygyűjtemény. Duna–Ipoly Nemzeti Park Igazgatóság, Budapest. pp. 421458. [in Hungarian]

    • Search Google Scholar
    • Export Citation
  • Goßner, M., Engel, K. and Ammer, U. 2006. Effects of selection felling and gap felling on forest arthropod communities: a case study in a spruce-beech stand of southern Bavaria. Eur. J. Forest Res. 125:345360.

    • Search Google Scholar
    • Export Citation
  • Hänggi, A., Stöckli, E. and Nentwig, W. 1995. Habitats of central european spiders. Miscellanea Faunistica Helvetica 4; 459 pp.

  • Hammer, Ø., Harper, D.A.T. and Ryan, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 4(1): 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

    • Search Google Scholar
    • Export Citation
  • Heino, J., Mykrä, H. and Kotanen, J. 2008. Weak relationships between landscape characteristics and multiple facets of stream macroinvertebrate biodiversity in a boreal drainage basin. Landsc. Ecol. 23:417426.

    • Search Google Scholar
    • Export Citation
  • Horváth, R., Magura, T., Péter, G. and Bayar, K. 2000. Edge effect on weevil and spider communities at the Bükk National Park in Hungary. Acta Zool. Acad. Sci. Hung. 46(4):275290.

    • Search Google Scholar
    • Export Citation
  • Horváth, R., Magura, T., Szinetár, Cs. and Tóthmérész, B. 2009. Spiders are not less diverse in small and isolated grasslands, but less diverse in overgrazed grasslands; a field study (East Hungary, Nyírség). Agric. Ecosyst. Environ. 130:1622.

    • Search Google Scholar
    • Export Citation
  • Klimaszewski, J., Langor, D.W., Work, T.T., Pelletier, G., Hammond, H.E.J. and Geramin, C. 2005. The effects of patch harvesting and site preparation on ground beetles (Coleoptera, Carabidae) in yellow birch dominated forests of southeastern Quebec. Can. J. Forest Res. 35:26162628.

    • Search Google Scholar
    • Export Citation
  • Klimes, L. 1987. Comparison of bioindicative value of vascular plants and spiders in the classification of ecosystems. Ekologia (CSSR) 6:165178.

    • Search Google Scholar
    • Export Citation
  • Koivula, M. and Niemelä, J. 2003. Gap felling as a forest harvesting method in boreal forests – responses of carabid beetles (Coleoptera, Carabidae). Ecography 26:179187.

    • Search Google Scholar
    • Export Citation
  • Kremen, C., Colwell, R.K., Erwin, T.L., Murphy, D.D., Noss, R.F. and Sanjayan, M.A. 1993. Terrestrial arthropod assemblages: their use in conservation planning. Conserv. Biol. 7:796808.

    • Search Google Scholar
    • Export Citation
  • Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:513.

  • Legendre, P. and Legendre, L. 1998. Numerical Ecology. Second English Edition. Elsevier Science, Amsterdam.

  • Lövei, G.L. and Sunderland, K.D. 1996. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41:231256.

    • Search Google Scholar
    • Export Citation
  • Maelfait, J.-P. and Hendrickx, F. 1998. Spiders as bioindicators of anthropogenic stress in natural and semi-natural habitats in Flanders (Belgium): some recent developments. In: Selden, P. A. (ed.), Proceedings 17th European Colloquium Arachnology. pp. 293300.

    • Search Google Scholar
    • Export Citation
  • Magura, T. 2002. Carabids and forest edge: spatial pattern and edge effect. Forest Ecol. Manage. 157:2337.

  • Máthé, I. 2006. Forest edge and carabid diversity in a Carpathian beech forest. Community Ecol. 7:9197.

  • Matveinen–Huju, K. 2007. Short-term effects of variable retention on epigaeic spiders and carabid beetles in Finland. Academic dissertation. University of Helsinki. pp. 39.

    • Search Google Scholar
    • Export Citation
  • Matveinen-Huju, K. and Koivula, M. 2008. Effects of alternative harvesting methods on boreal forest spider assemblages. Can. J. Forest Res. 38:782-794.

    • Search Google Scholar
    • Export Citation
  • May, R.M. 1975. Patterns of species abundance and distribution. In: Cody, ML & Diamond JM (eds.) Ecology and Evolution of Communities. Harvard University Press, Cambridge Massachusetts, USA. pp. 81120.

    • Search Google Scholar
    • Export Citation
  • McDonald, G. 2003. Biogeography: Space, Time and Life. John Wiley & Sons, New York.

  • Merkl, O. and Vig, K. 2009. Bogarak a Pannon Régióban. Vas Megyei Múzeumok Igazgatósága. B.K.L. Kiadó és a Magyar Természettudományi Múzeum. Szombathely. 87113. [in Hungarian]

    • Search Google Scholar
    • Export Citation
  • Molnár, T., Magura, T., Tóthmérész, B. and Elek, Z. 2001. Ground beetles (Carabidae) and edge effect in oak-hornbeam forest and grassland transects. Eur. J. Soil Biol. 37:297300.

    • Search Google Scholar
    • Export Citation
  • Morris, E.K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T.S., Meiners, T., Müller, C., Obermaier, E., Prati, D., Socher, S.A., Sonnemann, I., Wäschke, N., Wubet, T., Wurst, S. and Rillig, M.C. 2014. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4:35143524

    • Search Google Scholar
    • Export Citation
  • Murcia, C. 1995. Edge effect in fragmented forests: implications for conservation. Trends Ecol. Evol. 10:5862.

  • Müller-Motzfeld, G. (ed.) 2004. Band 2. Adephaga 1: Carabidae (Laufkäfer). 2. Auflage. In: Freude, H., Harde, K.W., Lohse, G.A. and Klausnitzer, B. (eds.), Die Käfer Mitteleuropas. Elsevier GMBH, Spektrum Akademischer Verlag, Heidelberg-Berlin. 521 pp.

    • Search Google Scholar
    • Export Citation
  • Nagy, F., Szél, Gy. and Vig, K. 2004. Vas megye futóbogár faunája (Coleoptera: Carabidae). Praenorica, Folia historico-naturalia 7:235 pp.

    • Search Google Scholar
    • Export Citation
  • Nentwig, W., Blick. T., Gloor, D., Hänggi, A., and Kropf, C. 2018. Spiders of Europe. www.araneae.unibe.ch. 2018.04.06.

  • Niemelä, J., Koivula, M. and Kotze, J.D. 2007. The effects of forestry on carabid beetles (Coleoptera: Carabidae) in boreal forests. J. Insect Conserv. 11:518.

    • Search Google Scholar
    • Export Citation
  • Pickett, S.T.A. and White, P.S. 1985. Patch dynamics: A synthesis. In: Pickett, S.T.A. and White, P.S. (eds.), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, Orlando, Florida. pp. 1733.

    • Search Google Scholar
    • Export Citation
  • Platnick, N.I. 2018. The World Spider Catalog, Version 19.0. URL http://wsc.nmbe.ch

  • Podani, J. 1997. Bevezetés a többváltozós biológiai adatfeltárás rej-telmeibe. Scientia kiadó, Budapest. 252257. [in Hungarian]

    • Search Google Scholar
    • Export Citation
  • Ries, L., Feltcher, R.J. Jr., Battin, J. and Sisk, T.D. 2004. Ecological responses to habitat edges: Mechanisms, models, and variability explained. Ann. Rev. Ecol. Evol. Syst. 35:491522.

    • Search Google Scholar
    • Export Citation
  • Runkle, J.R. 1989. Synchrony of regeneration, gaps, and latitudinal differences in tree species diversity. Ecology 70:546547.

  • Schnitzer, S.A. and Carson, W.P. 2000. Have we forgotten the forest because of the trees? Trends Ecol. Evol. 15:376.

  • Scott, A.G., Oxford, G.S. and Selden, P.A. 2006. Epigeic spiders as ecological indicators of conservation value forpeat bogs. Biol. Conserv. 12:420428.

    • Search Google Scholar
    • Export Citation
  • Shannon, C.E. 1948. A mathematical theory of communication. Bell System Tech. J. 27:379423 and 623–656.

  • Siira-Pietikäinen, A. and Haimi, J. 2009. Changes in soil fauna 10 years after forest harvestings: Comparison between clear felling and green-tree retention methods. Forest Ecol. Manage. 258:332338.

    • Search Google Scholar
    • Export Citation
  • Simon, T. 2000. A magyarországi edényes flóra határozója (Guide to the Hungarian Vascular Flora). Nemzeti Tankönyvkiadó, Budapest. [in Hungarian]

    • Search Google Scholar
    • Export Citation
  • Simpson, E.H. 1949. Measurement of diversity. Nature 163:68.

  • Szél, Gy. and Kutasi, Cs. 2005. Influence of land use intensity on the ground beetle assemblages (Coleoptera: Carabidae) in Central Hungary. In: Lövei, G. and Toft, S. (eds.), European Carabidology 2003. Proceedings of the 11th European Carabidologist Meeting. DIAS Reports Plant Production 114. pp. 305311.

    • Search Google Scholar
    • Export Citation
  • Ulyshen, M.D. and Hanula, J.L., 2009. Responses of arthropods to large scale manipulations of dead wood in loblolly pine stands in the Southeastern United States. Environ. Entomol. 38:10051012.

    • Search Google Scholar
    • Export Citation
  • Wilsey, B.J., Chalcraft, D.R., Bowles, C.M. and Willig, M.R. 2005. Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 86:11781184.

    • Search Google Scholar
    • Export Citation
  • Wise, D.H. 1993. Spiders in Ecological Webs. Cambridge Studies in Ecology. Cambridge University Press, Cambridge.

  • Woodcock, B.A. 2005. Pitfall trapping in ecological studies. In: Leather, S. (ed.), Insect Sampling in Forest Ecosystems. Blackwell, Oxford. pp. 3757.

    • Search Google Scholar
    • Export Citation
  • Zólyomi, B. 1987. Coenotone, ecoton and their role of preserving relic species. Acta Bot. Hung. 33:318.