Author: E. Feoli 1
View More View Less
  • 1 Department of Life Sciences, University of Trieste, 34127Italy
Restricted access

After stressing the need to keep separated the concept of variability and/or inequality and dissimilarity from that of diversity, it is suggested that diversity of a system should be measured primarily by the number of different classes (K) we can define in it (richness) by classification or identification processes. An index d, ranging between 0 and 1, that summarizes the similarity pattern within the system, can be used if necessary to transform K to a “fuzzy” diversity number, according to the idea that the higher is the similarity within the system the lower should be its diversity. Another index, r, is proposed to measure the “loss” of diversity due to similarity within the system, an index that fits the concept of “redundancy”. Since every diversity vector may be interpreted as a crisp symmetric similarity matrix, of which the Gini-Simpson’s index is the average dissimilarity, while the index of Shannon is the entropy of its eigenvalues, the index d can be chosen to quantify one among the following similarities: a) the overall average similarity of the classes considering the within classes similarity equal to 1 and the between classes similarity equal to 0 (crisp similarity pattern): this is coincident with the evenness of the proportion of importance of the classes, b) the average similarity between the classes without considering evenness, or c) the combination of the two similarities (similarity between the classes and evenness). In these last two cases, the similarity between the classes is characterizing the similarity pattern of a system in a fuzzy way (fuzzy diversity). It is stressed that the diversity of vegetation systems may be of two complementary types: plant individual-based diversity and plant community-based diversity. If we assume that each plant community type corresponds to one habitat then habitat diversity (or niche width) can be calculated for each class of plant individuals according to the number of classes of plant communities in which we can find it. Habitat diversity can be used to measure the indicator value of species or other classes of plant individuals and of plant communities. In this last case, we have to consider the distribution of plant communities in classes defined by environmental factors. It is suggested that the terminology alpha, beta, gamma diversity can be useful only if used to distinguish types of diversity in vegetation systems: alpha diversity = plant individual based diversity, gamma diversity = the union of alpha diversities, beta diversity = plant community based diversity. Thanks to the availability of mathematical tools, it is concluded that rather than being worried about measuring diversity it would be more fruitful to worry about why we are willing to measure it.

  • Allen, T.F.H. and T.B. Starr. 1982. Hierarchy: Perspectives for Ecological Complexity. University of Chicago Press, Chicago.

  • Anderson, M.J., T.O. Crist, J.M. Chase, M. Vellend, B.D. Inouye, A.L. Freestone, N.J. Sanders, H.V. Cornell, L.S. Comita, K.F. Davies, S.P. Harrison, N.J.B. Kraft, J.C. Stegen and N.G. Swenson. 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14:1928.

    • Search Google Scholar
    • Export Citation
  • Avena, G.C., Blasi, E. Feoli and A. Scoppola. 1981. Measurement of the predictive value of species lists for species cover in phytosociological samples. Vegetatio 45:7784.

    • Search Google Scholar
    • Export Citation
  • Biondi, E., E. Feoli and V. Zuccarello 2004. Modelling environmental responses of plant associations: a review of some critical concepts in vegetation study. Crit. Rev. Plant. Sci. 23:149156.

    • Search Google Scholar
    • Export Citation
  • Biondini, M.E., P.W. Mielke Jr. and E.F. Redente. 1991. Permutation techniques based on Euclidean analysis spaces: A new and powerful statistic method for ecological research. In: E. Feoli and L. Orlóci (eds), Computer assisted vegetation analysis. Kluwer, Boston. pp. 221240.

    • Search Google Scholar
    • Export Citation
  • Botta-Dukát, Z. 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16:533540.

    • Search Google Scholar
    • Export Citation
  • Braun-Blanquet, J. 1964. Pflanzensoziologie. Gründzuge der Vegetationskunde. 3th ed. Springer, Wien.

  • Burba, N., E. Feoli, M. Malaroda and V. Zuccarello. 1992. Un sistema informativo per la vegetazione. Software per l’archiviazione della vegetazione italiana e per l’elaborazione di tabelle. Manuale di utilizzo dei programmi. GEAD-EQ n.11. Università degli Studi di Trieste.

    • Search Google Scholar
    • Export Citation
  • Chiarucci, A., G. Bacaro, A. Vanini and D. Rocchini. 2008. Quantifying species richness at multiple spatial scales in a Natura 2000 network. Community Ecol. 9:185192.

    • Search Google Scholar
    • Export Citation
  • Chiarucci, A., G. Bacaro, G. Filibeck, S. Landi, S. Maccherini and A. Scoppola 2012. Scale dependence of plant species richness in a network of protected areas. Biodivers. Conserv. 21:503516.

    • Search Google Scholar
    • Export Citation
  • Dale, M.B. 1988. Knowing when to stop: cluster concept–concept cluster. Coenoses 1:1131.

  • Dale, M.B. 1994. Do ecological communities exist? J. Veg. Sci. 5:285286.

  • Dale, M.B., E. Feoli and P. Ganis. 1989. Incorporation of information from the taxonomic hierarchy in comparing vegetation types. Taxon 38:216227.

    • Search Google Scholar
    • Export Citation
  • Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (1st ed.). John Murray, London.

    • Search Google Scholar
    • Export Citation
  • de Bello, F., J. Lepš, S. Lavorel and M. Moretti 2007. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecol. 8:163170.

    • Search Google Scholar
    • Export Citation
  • De Cáceres, M., M. Chytrý, E. Agrillo, F. Attorre, Z. Botta-Dukát, J. Capelo, B. Czúcz, J. Dengler, J. Ewald, D. Faber-Langendoen, E. Feoli, S.B. Franklin, R. Gavilán, F. Gillet, F. Jansen, B. Jiménez-Alfaro, P. Krestov, F. Landucci, A. Lengyel, J. Loidi, L. Mucina, R.K. Peet, D.W. Roberts, J. Roleček, J.H.J. Schaminée, S. Schmidtlein, J.P. Theurillat, L. Tichý, D.A. Walker, O. Wildi, W. Willner and S.K. Wiser. 2015. A comparative framework for broad-scale plot-based vegetation classification. Appl. Veg. Sci. 18:543560.

    • Search Google Scholar
    • Export Citation
  • Duarte, L.D.S., V.J. Debastiani, A.V.L. Freitas and V. Pillar. 2016. Dissecting phylogenetic fuzzy weighting: theory and application in metacommunity phylogenetic. Meth. Ecol. Evol. 7:937946.

    • Search Google Scholar
    • Export Citation
  • Feoli, E. 1977. On the resolving power of principal component analysis in plant community ordination. Vegetatio 33:119125.

  • Feoli, E. 1983. Predictive use of classification and ordination methods in plant community ecology. A summary with examples. In: C. Ferrari, S. Gentile, S. Pignatti and E. Poli Marchese, Le comunità vegetali come indicatori ambientali. Regione Emila Romagna (Assessorato Ambiente) e Società Italiana di Fitosociologia. pp. 83108.

    • Search Google Scholar
    • Export Citation
  • Feoli, E. 1984a. Some aspects of classification and ordination of vegetation data in perspective. Studia Geobot. 4:721.

  • Feoli, E. 1984b. Is there any correlation between anatomical spaces of vegetation and its sampling space? Giorn. Bot. Ital. 118:98100.

    • Search Google Scholar
    • Export Citation
  • Feoli, E. 2010. Heath species and heathlands of Italy: an analysis of their relationships under the perspective of climate change based on the description of habitats used for the project “Carta della Natura” (Italian Map of Nature). Ecol. Questions 12:161170.

    • Search Google Scholar
    • Export Citation
  • Feoli, E. 2012. Diversity patterns of vegetation systems from the perspective of similarity theory. Plant Biosyst. 146:797804.

  • Feoli, E and P. Ganis. 1985. Comparison of floristic vegetation types by multiway contingency tables. Abstr. Bot. 9:115.

  • Feoli, E. and M. Lagonegro. 1982. Syntaxonomical analysis of beech woods in the Apennines (Italy) using the program package IAHOPA. Vegetatio 50:129173.

    • Search Google Scholar
    • Export Citation
  • Feoli, E. and D. Lausi. 1980. Hierarchical levels in syntaxonomy based on information functions. Vegetatio 42:113115.

  • Feoli, E. and L. Orlóci. 1979. Analysis of concentration and detection of underlying factors in structured tables. Vegetatio 40:4954.

    • Search Google Scholar
    • Export Citation
  • Feoli, E. and L. Orlóci. 1991. The properties and interpretation of observations in vegetation study. In: E. Feoli, L. Orlóci (eds), Computer Assisted Vegetation Analysis. Kluwer, Boston. pp. 313.

    • Search Google Scholar
    • Export Citation
  • Feoli, E. and L. Orlóci. 2011. Can similarity theory contribute to the development of a general theory of the plant community? Community Ecol. 12:135141.

  • Feoli, E and M. Scimone. 1984a. Hierarchical diversity: an application to broad-leaved woods of the Apennines. Giorn. Bot. Ital. 118:115.

  • Feoli, E. and M. Scimone. 1984b. A quantitative view of textural analysis of vegetation and examples of application of some methods. Arch. Bot. Biogeogr. Ital. 60:7394.

  • Feoli, E and V. Zuccarello. 1986. Ordination based on classification: yet another solution?! Abstr. Bot. 10:203219.

  • Feoli, E. and V. Zuccarello. 2013. Fuzzy sets and eigenanalysis in community study: classification and ordination are two faces of the same coin. Community Ecol. 14:164171.

    • Search Google Scholar
    • Export Citation
  • Feoli, E., G. Ferro and P. Ganis. 2006. Validation of phytosociological classifications based on a fuzzy set approach. Community Ecol. 7:98117.

    • Search Google Scholar
    • Export Citation
  • Feoli, E., P. Ganis and C. Ricotta. 2013. Measuring diversity of environmental systems. In: J.J. Ibanez and J. Bockeim (eds.), Pedodiversity. CRC Press Taylor and Francis. pp. 2958.

    • Search Google Scholar
    • Export Citation
  • Feoli, E., P. Ganis and Zerihun Woldu. 1988. Community niche, an effective concept to measure diversity of gradients and hyperspaces. Coenoses 3:3134.

    • Search Google Scholar
    • Export Citation
  • Feoli, E., M. Lagonegro and L. Orlóci. 1984. Information Analysis of Vegetation Data. Dr. W. Junk Publishers, The Hague.

  • Feoli, E, L. Gallizia Vuerich, P. Ganis and Zerihun Woldu. 2009. A classificatory approach integrating fuzzy set theory and permutation techniques for land cover analysis: a case study on a degrading area of the Rift Valley (Ethiopia). Community Ecol. 10:5364.

    • Search Google Scholar
    • Export Citation
  • Feoli, E., P. Ganis, G. Oriolo and A. Patrono. 1992. Modelli per il calcolo della diversità e loro applicabilità nella valutazione di impatto ambientale. S.I T.E. Atti 14:2934.

    • Search Google Scholar
    • Export Citation
  • Ferrari, C., S. Gentile, S. Pignatti and E. Poli Marchese (eds.). 1983. Le comunità vegetali come indicatori ambientali. Regione Emila Romagna (Assessorato Ambiente) e Società Italiana di Fitosociologia, Bologna.

    • Search Google Scholar
    • Export Citation
  • Gorelick, R. 2011. Commentary: Do we have a consistent terminology for species diversity? The fallacy of true diversity. Oecologia 167:885888.

    • Search Google Scholar
    • Export Citation
  • Hill, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54:427432.

  • Hui, C. 2008. On species-area and species accumulation curves: a comment on Chong and Stohlgren’s index. Ecol. Indic. 8:327329.

  • Hui, C. and M.A. McGeoch. 2008. Does the self-similar species distribution model lead to unrealistic predictions? Ecology 89:29462952.

  • Hui, C. and M.A. McGeoch. 2014. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184:684694.

    • Search Google Scholar
    • Export Citation
  • Hurlbert, S.H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577586.

  • Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88:24272439.

  • Jost, L. 2010. The relation between evenness and diversity. Diversity 2:207232.

  • Juhász-Nagy, P. 1993. Notes on compositional diversity. Hydrobiologia 249:173182.

  • Jurasinski, G. and M. Koch. 2011. Commentary: do we have a consistent terminology for species diversity? We are on the way. Oecologia 167:893902.

    • Search Google Scholar
    • Export Citation
  • Keddy, P. 1993. Do ecological communities exist? A reply to Bastow Wilson. J. Veg. Sci. 4:135136.

  • Kizekova, M., E. Feoli, G. Parente and R. Kanianska. 2017. Analysis of the effects of mineral fertilization on species diversity and yield of permanent grasslands: revisited data to mediate economic and environmental needs. Community Ecol. 18:295304.

    • Search Google Scholar
    • Export Citation
  • Kraft, N.J.B and D.D. Ackerly. 2014. Assembly of plant communities. In: R.K. Monson (ed.), Ecology and the Environment, The Plant Sciences 8. Springer, New York.

    • Search Google Scholar
    • Export Citation
  • Leinster, T. and C.A. Cobbold. 2012. Measuring diversity: the importance of species similarity. Ecology 93:477489.

  • Levin, S.A. 1983a. Coevolution. In: H.I. Freedman and C. Strobeck (eds.), Population Biology. Lecture notes in Biomathematics 52:328334.

  • Levin, S.A. 1983b. Some approaches to the modelling of coevolutionary interactions. In: M. Nitecki (ed.), Coevolution. University of Chicago Press. pp. 2165.

    • Search Google Scholar
    • Export Citation
  • MacArthur, R. and R. Levins. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101(921): 377385.

    • Search Google Scholar
    • Export Citation
  • Magurran, A.E. 1988. Ecological Diversity and its Measurement. Croom Helm, London/Sydney.

  • Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell, Oxford.

  • Maignan, C., G. Ottaviano, Pinelli, D., Rullani,F. 2003. Bio-ecological diversity vs. socio-economic diversity: A comparison of existing measures. Working Papers Fondazione Eni Enrico Mattei. 13.

    • Search Google Scholar
    • Export Citation
  • Margalef, R. 1958. Information theory in ecology. Gen. Syst. 3:3671.

  • Mason, N.V.H., D. Mouillot, W.G. Lee and J.B. Wilson. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112118.

    • Search Google Scholar
    • Export Citation
  • Mazzoleni, S., G. Bonanomi, F. Giannino, G. Incerti, S.C. Dekker and M. Rietkerk. 2010. Modelling the effects of litter decomposition on tree diversity patterns. Ecol Model. 221:278492.

    • Search Google Scholar
    • Export Citation
  • Mazzoleni, S., G. Bonanomi, F. Giannino, M.G. Rietkerk, S.C. Dekker and F. Zucconi. 2007. Is plant biodiversity driven by decomposition processes? An emerging new theory on plant diversity. Community Ecol. 8:103109.

    • Search Google Scholar
    • Export Citation
  • Mazzoleni, S., F. Carteni, G. Bonanomi, M. Senatore, P. Termolino, F. Giannino, G. Incerti, M. Rietkerk, V. Lanzotti and M.L. Chiusano. 2015. Inhibitory effects of extracellular self-DNA: a general biological process? New Phytol. 206:12732.

    • Search Google Scholar
    • Export Citation
  • McCann, K.S. 2000. The diversity-stability debate. Nature 405:228233.

  • Moreno, C.E. and P. Rodríguez. 2011. Commentary: Do we have a consistent terminology for species diversity? Back to basics and toward a unifying framework. Oecologia 167:889892.

    • Search Google Scholar
    • Export Citation
  • Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York.

  • Newman, E.I. (ed.) 1982. The Plant Community as a Working Mechanism. Blackwell Scientific Publications, Oxford.

  • Orlóci, L. 1972. On objective functions of phytosociological resemblance. Am. Midl. Nat. 88:2855.

  • Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. 2nd ed. Dr. Junk, The Hague.

  • Orlóci, L. 2013. Quantum Analysis of Primary Succession. The Energy Structure of a Vegetation Chronosere in Hawai’i Volcanoes National Park. SCADA Publishing, Canada. Online Edition: https://createspace.com/4452597

    • Search Google Scholar
    • Export Citation
  • Orlóci, L. 2014. Quantum Ecology. Energy Structure and its Analysis. SCADA Publishing, Canada. Online Edition: https://createspace.com/4406077

    • Search Google Scholar
    • Export Citation
  • Orlóci, L. 2015a. Diversity Analysis, Holistic Energetics, and Statistics. The Resonator Complex Model of the Vegetation Stand. SCADA Publishing, Canada. Online Edition: https://createspace.com/5783923

    • Search Google Scholar
    • Export Citation
  • Orlóci, L. 2015b. Energy-based Vegetation Mapping. A Case Study in Statistical Quantum Ecology. SCADA Publishing, Canada. Online Edition: https://createspace.com/5495773.

  • Orlóci, L. and M. Orlóci. 1985. Comparison of communities without the use of species: model and examples. Ann. Bot. 43:275285.

  • Orlóci, L., E. Feoli, D. Lausi and P.L. Nimis. 1986. Estimation of character structure convergence (divergence) in plant communities: a nested hierarchical model. Coenoses 1:1120.

    • Search Google Scholar
    • Export Citation
  • Palmer, M.W. and P.S. White. 1994. On the existence of ecological communities. J. Veg. Sci. 5: 279282.

  • Patil, G.P. and C. Taillie. 1976. Ecological diversity: concepts, indices and applications. In: Proceedings of the 9th Int. Biometric conference. The Biometric Society. 2:383411.

    • Search Google Scholar
    • Export Citation
  • Pavoine, S. 2016. A guide through a family of phylogenetic dissimilarity measures among sites. Oikos 125:17191732.

  • Pavoine, S., M.S. Love and M.B. Bonsall. 2009. Hierarchical partitioning of evolutionary and ecological patterns in the organization of phylogenetically-structured species assemblages: application to rockfish (genus: Sebastes) in the Southern California Bight. Ecol. Lett. 12:898908.

    • Search Google Scholar
    • Export Citation
  • Pavoine, S., E. Marcon and C. Ricotta. 2016. ‘Equivalent numbers’ for species, phylogenetic or functional diversity in a nested hierarchy of multiple scales. Meth. Ecol. Evol. 7:11521163.

    • Search Google Scholar
    • Export Citation
  • Pavoine, S., S. Ollier and D. Pontier. 2005. Measuring diversity from dissimilarities with Rao’s quadratic entropy: Are any dissimilarities suitable? Theor. Popul. Biol. 67:231239.

    • Search Google Scholar
    • Export Citation
  • Pesarin, F. 2001. Multivariate Permutation Tests. With Applications in Biostatistics. John Wiley & Sons, Chichester, Toronto.

  • Pielou, E.C. 1975. Ecological Diversity. Wiley, New York.

  • Pillar, V. 1999. How sharp are classifications? Ecology 80:25082516.

  • Pillar, V. and L. Orlóci 1993. Character-Based Community Analysis: The Theory and an Application Program. SPB Academic Publishing bv, The Hague, The Netherlands.

    • Search Google Scholar
    • Export Citation
  • Pillar, V. and L. Orlóci. 1996. On randomization testing in vegetation science: Multifactor comparisons of relevé groups. J. Veg. Sci. 7:585592.

    • Search Google Scholar
    • Export Citation
  • Pillar, V. and L. Orlóci. 2004. Character-based community analysis: The theory and an application program. Available: http://ecoqua.ecologia.ufrgs.br

    • Search Google Scholar
    • Export Citation
  • Pillar, V., L.D.S. Duarte, E.E. Sosinski and F. Joner. 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20:334348.

    • Search Google Scholar
    • Export Citation
  • Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys Publishers, Leiden.

  • Podani, J. 2006. With a machete through the jungle: some thoughts on community diversity. Acta Biotheor. 54: 125131.

  • Podani, J. 2007. Analisi ed esplorazione multivariate dei dati in Ecologia e Biologia. Liguori editore, Napoli.

  • Podani, J. and D. Schmera. 2011. A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos 120:16251638.

    • Search Google Scholar
    • Export Citation
  • Rao, C.R. 1982. Diversity and dissimilarity measurements: a unified approach. Theor. Popul. Biol. 21:2443.

  • Rao, C.R. 2010. Quadratic entropy and analysis of diversity. Sankhyā: Ind. J. Stat. 72-A(1):7080.

  • Rényi, A. 1961. On measure of entropy and information. In: J. Neyman (ed.), The Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability. Univ. Calif. Press, Berkeley, CA. pp. 547561.

    • Search Google Scholar
    • Export Citation
  • Ricotta, C. 2003. On parametric evenness measures. J. Theor. Biol. 222:189197.

  • Ricotta, C. 2004. A recipe for unconventional evenness measures. Acta Biotheor. 52:95104.

  • Ricotta, C. 2017. Of beta diversity, variance, evenness, and dissimilarity. Ecol. Evol. 7:48354843.

  • Ricotta, C. and M. Anand. 2006. Spatial complexity of ecological communities: Bridging the gap between probabilistic and non-probabilistic uncertainty measures. Ecol. Model. 197:5966.

    • Search Google Scholar
    • Export Citation
  • Ricotta, C. and M. Marignani. 2007. Computing β-diversity with Rao’s quadratic entropy: A change of perspective. Divers. Distrib.13:237241.

  • Ricotta, C. and S. Pavoine. 2015. A multiple-site dissimilarity measure for species presence/absence data and its relationship with nestedness and turnover. Ecol. Indic. 54:203206.

    • Search Google Scholar
    • Export Citation
  • Ricotta, C. and L. Szeidl. 2006. Towards a unifying approach to diversity measures: bridging the gap between Shannon entropy and Rao’s quadratic index. Theor. Popul. Biol. 70:237243.

    • Search Google Scholar
    • Export Citation
  • Ricotta, C. and L. Szeidl. 2009. Diversity partitioning of Rao’s quadratic entropy. Theor. Popul. Biol. 76:299302.

  • Ricotta, C, E. De Zuliani, A. Pacini and G.C. Avena. 2001. On the mutual relatedness of evenness measures. Community Ecol. 2:5156.

  • Ricotta, C., G. Bacaro, M. Caccianiga, B.E.L. Cerabolini and M. Moretti. 2015. A classical measure of phylogenetic dissimilarity and its relationship with beta diversity. Basic Appl. Ecol. 16:1018.

    • Search Google Scholar
    • Export Citation
  • Ricotta, C., G. Bacaro, M. Caccianiga, B.E.L. Cerabolini and S. Pavoine. 2018. A new method for quantifying the phylogenetic redundancy of biological communities. Oecologia 186:339346.

    • Search Google Scholar
    • Export Citation
  • Ricotta, C., E. Ari, G. Bonanomi, F. Giannino, D. Heathfield, S. Mazzoleni and J. Podani. 2017. Spatial analysis of phylogenetic community structure: New version of a classical method. Community Ecol. 18:3746.

    • Search Google Scholar
    • Export Citation
  • Roberts, D.W. 1986. Ordination on the basis of fuzzy set theory. Vegetatio 66:123131.

  • Schmera, D. and J. Podani. 2018. Through the jungle of methods quantifying multiple-site resemblance. Ecol. Inform. 44:16.

  • Tichý, L. 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13:451453.

  • Tichý, L. and J. Holt. 2006. JUICE, program for management, analysis and classification of ecological data. Masaryk University, Brno, CZ.

    • Search Google Scholar
    • Export Citation
  • Tichý, L, M. Chytrý, M. Hájek, S.S. Talbot and Z. Botta-Dukát. 2010. OptimClass: using species-to-cluster fidelity to determine the optimal partition in classification of ecological communities. J. Veg. Sci. 21:287299.

    • Search Google Scholar
    • Export Citation
  • Tilman, D., F. Isbell, and J. Cowles. 2014. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45:471493.

  • Tuomisto, H. 2010a. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:222.

  • Tuomisto, H. 2010b. A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 4:853860.

  • Tuomisto, H. 2011. Commentary: do we have a consistent terminology for species diversity? Yes, if we choose to use it. Oecologia 167:903911.

    • Search Google Scholar
    • Export Citation
  • van der Maarel, E. 1975. The Braun-Blanquet approach in perspective. Vegetatio 30:213219.

  • van der Maarel, E. 1996. Pattern and process in plant community. Fifty years after A.S. Watt. J. Veg. Sci. 7:1928.

  • van der Maarel, E. 2005. Vegetation ecology – an overview. In: E. van der Maarel (ed.) Vegetation Ecology. Blackwell, UK. pp. 151.

  • Von Bertalanffy, L. 1968. General System Theory. George Braziller, New York.

  • Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35:122.

  • Whittaker, R.H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30:279338.

  • Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21:213251.

  • Wildi, O. 2017. Data Analysis in Vegetation Ecology. 3rd ed. CABI, Wallingford, UK.

  • Wilkinson, J.H. 1965. The Algebraic Eigenvalue Problem. Oxford University Press, London.

  • Wilson, J.B. 1991. Does vegetation science exist? J. Veg. Sci. 2:289290.

  • Wilson, J.B. 1994. Who makes the assembly rules? J. Veg. Sci. 5:275278.

  • Wilson, J.B. 2011. The twelve theories of co-existence in plant communities: the doubtful, the important and the unexplored. J. Veg. Sci. 22:184195.

    • Search Google Scholar
    • Export Citation
  • Wilson, J.B. 2012. Species presence/absence sometimes represents a plant community as well as species abundances do, or better. J. Veg. Sci. 23:10131023.

    • Search Google Scholar
    • Export Citation
  • Wilson, J.B. and A. Chiarucci. 2000. Do plant communities exist? Evidence from scaling up local species-area relations to the regional level. J. Veg. Sci. 11(5):773775.

    • Search Google Scholar
    • Export Citation
  • Wilson, J.B., R.K. Peet and M.T. Sykes. 1995. What constitutes evidence of community structure? A reply to van der Maarel, Noest and Palmer. J. Veg. Sci. 6:753758.

    • Search Google Scholar
    • Export Citation
  • Zadeh, L.A. 1965. Fuzzy sets. Inform. Control 8:338353.

  • Zadeh, L.A. 1978. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems 1:328.

  • Zhao, S.X. 1986. Discussion on fuzzy clustering. In: 8th Int. Conference on Pattern recognition. IEEE Press, New York. pp. 612614.

  • Zimmerman, H. 1996. Fuzzy Set Theory and its Applications. 3rd ed. Kluwer, Dordrecht.