View More View Less
  • 1 Universita di Roma “La Sapienza” Dipartimento di Matematica “Guido Castelnuovo” Piazzale Aldo Moro, 2 I-00185 Roma
  • | 2 Université des Sciences et Technologies de Lille Laboratoire de Probabilité et Statistique Villeneuve d’Ascq F-59655
Restricted access

In order to enhance interpretation of two-way contingency tables (cross-classifications) derived from two hierarchical classifications, new indices are suggested to evaluate the relative contribution of nodes in either hierarchy to the nodes or to a partition of groups derived from the other hierarchy. Using these tools, cut-levels in both hierarchies can be found to define optimal partitions, and groups from both partitions can be associated in order to identify their mutual relationships. The method is illustrated with an actual example from vegetation ecology.  

  • Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. 2nd ed. Junk. The Hague.

    Multivariate Analysis in Vegetation Research. , ().

  • MacQueen, J. 1967. Some methods for classification and analysis of multivariate observations. Proceedings of the V. Berkeley Symposium 1965. pp. 281-297.

    , , .

    • Search Google Scholar
  • Lebart, L., A. Morineau and K. Warwick. 1984. Multivariate Descriptive Statistical Analysis. Wiley, New York.

    Multivariate Descriptive Statistical Analysis. , ().

  • André, H.M. 1988. Variable centered methods and community classification. Coenoses 3(2): 69 78.

    'Variable centered methods and community classification ' () 3 Coenoses : 69 -78.

  • Camiz, S. 1994. A procedure for structuring vegetation tables. Abstracta Botanica 18(2): 57-70.

    'A procedure for structuring vegetation tables ' () 18 Abstracta Botanica : 57 -70.

  • Camiz, S. 1993. Computer assisted procedures for structuring community data. Coenoses 8(2): 97-104.

    'Computer assisted procedures for structuring community data ' () 8 Coenoses : 97 -104.

  • Anderson, T.W. 1984. An Introduction to Multivariate Statistical Analysis. Wiley, New York.

    An Introduction to Multivariate Statistical Analysis. , ().

  • Rao, C.R. 1964. The use and interpretation of principal components analysis in applied research. Sankya 26: 329-357.

    'The use and interpretation of principal components analysis in applied research ' () 26 Sankya : 329 -357.

    • Search Google Scholar
  • Anderberg, M.R. 1973. Cluster Analysis for Applications. Academic Press, New York.

    Cluster Analysis for Applications. , ().

  • Agresti, A. 1990. Categorical Data Analysis. Wiley, New York.

    Categorical Data Analysis , ().

  • Camiz, S. and J.J. Denimal. 1998a. Interpretation of a cross-classification: a new method and an application. In: A. Rizzi, M. Vichi and H.-H. Bock (eds), Advances in Data Science and Classification. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, pp. 555-560.

    Interpretation of a cross-classification: a new method and an application , () 555 -560.

    • Search Google Scholar
  • Ward, J.H. 1963. Hierarchical grouping to optimize an objective function. J. Amer. Stat. Ass. 58: 236-244.

    'Hierarchical grouping to optimize an objective function ' () 58 J. Amer. Stat. Ass. : 236 -244.

    • Search Google Scholar
  • Wildi, O. and L. Orloci. 1990. Numerical Exploration of Community Patterns. SPB, The Hague.

    Numerical Exploration of Community Patterns. , ().

  • Camiz, S. and J.J. Denimal. 1998b. A new method for cross-classification analysis of contingency data tables. In: R. Payne and P. Green (eds.), Compstat 98 - Proceedings in Computational Statistics, Physica-Verlag, Heidelberg: pp. 209-214.

    , , .

    • Search Google Scholar
  • Denimal, J.J. 1997. Aides à l'interpretation mutuelle de deux hiérarchies construites sur les lignes et les colonnes d'un tableau de contingence. Revue de Statistique Appliquée 45(4): 93-110.

    'Aides à l'interpretation mutuelle de deux hiérarchies construites sur les lignes et les colonnes d'un tableau de contingence ' () 45 Revue de Statistique Appliquée : 93 -110.

    • Search Google Scholar
  • Gordon, A.D. 1998. How many clusters? An investigation on five procedures for detecting nested cluster structure. Proceedings of the IFCS-96 Conference, Kobe. pp. 109-116.

    , , .

    • Search Google Scholar
  • Govaert, G. 1984. Classification croisée. Université de Paris VI, Thèse d'état.

  • Greenacre, M. 1988. Clustering the rows and columns of a contingency table. J. Classif. 5: 39-51.

    'Clustering the rows and columns of a contingency table ' () 5 J. Classif : 39 -51.

  • Hardy, A. and J.F. Deschamps. 1999. Apport du critère des hyper-volumes à la dètermination du nombre de classes en classification automatique. XXXIe Journées de Statistique - Résumés. Société Francaise de Statistique, Grenoble, pp. 103-106.

    Apport du critère des hyper-volumes à la dètermination du nombre de classes en classification automatique , () 103 -106.

    • Search Google Scholar
  • Hartigan, A. 1975. Clustering Algorithms. Wiley, New York.

    Clustering Algorithms , ().

  • Hill, M.O. 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 237-249.

    'Reciprocal averaging: an eigenvector method of ordination ' () 61 J. Ecol. : 237 -249.

  • Hill, M.O. 1974. Correspondence analysis: a neglected multivariate method. Appl. Stat. 23: 340-354.

    'Correspondence analysis: a neglected multivariate method ' () 23 Appl. Stat. : 340 -354.

  • Hirotsu, C. 1983. Defining the pattern of association in two-way contingency tables. Biometrika 70: 579-589.

    'Defining the pattern of association in two-way contingency tables ' () 70 Biometrika : 579 -589.

    • Search Google Scholar
  • Camiz, S. 1991. Reflections on spaces relationships in ecological data analysis: effects, problems, possible solutions. Coenoses 6(1): 3-13.

    'Reflections on spaces relationships in ecological data analysis: effects, problems, possible solutions ' () 6 Coenoses : 3 -13.

    • Search Google Scholar
  • Kendall, D.G. 1971. Seriation from abundance matrices. In F.R. Hodson, D.G. Kendall, and P. Tautu (eds.), Mathematics in the Archaeological and Historical Sciences. Edinburgh University Press, Edinburgh, pp. 215-252.

    Seriation from abundance matrices , () 215 -252.

  • Lauro, N. and L. D'Ambra. 1984. L'analyse non symmétrique des correspondances. In: E. Diday et al. (eds.), Data Analysis and Informatics, Elsevier, Amsterdam, vol. III. pp. 433-446.

    L'analyse non symmétrique des correspondances , () 433 -446.

  • Lebart, L., A. Morineau and J.P. Fénelon. 1979. Traitement des données statistiques. Dunod, Paris.

    Traitement des données statistiques. , ().

  • Lebart, L., A. Morineau and M. Piron. 1995. Statistique Exploratoire Multidimensionnelle. Dunod, Paris.

    Statistique Exploratoire Multidimensionnelle. , ().

  • Lebart, L., A. Morineau and N. Tabard. 1977. Techniques de la Description Statistique. Dunod, Paris.

    Techniques de la Description Statistique. , ().

  • Milligan, G.W. and M.C. Cooper. 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50: 159-179.

    'An examination of procedures for determining the number of clusters in a data set ' () 50 Psychometrika : 159 -179.

    • Search Google Scholar
  • Mojena, R. and D. Wishart. 1980. Stopping rule for ward's clustering method. Compstat '80 - Proceedings in Computational Statistics. Physica Verlag, Wien. pp. 426-432.

    Stopping rule for ward's clustering method , () 426 -432.

  • Morineau, A. and P. Alevizos. 1992. Tests et Valeurs tests. Application à l' étude des mastics dans la fabrication de vitraux. Revue de Statistique Appliquée 40(4): 27-43.

    'Tests et Valeurs tests. Application à l' étude des mastics dans la fabrication de vitraux ' () 40 Revue de Statistique Appliquée : 27 -43.

    • Search Google Scholar
  • Müller-Dombois, D. and E. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. Wiley, New York.

    Aims and Methods of Vegetation Ecology. , ().

  • Orlóci, L. 1967. An agglomerative method for classification of plant communities.J. Ecol. 55: 193-205.

    'An agglomerative method for classification of plant communities ' () 55 J. Ecol. : 193 -205.

    • Search Google Scholar
  • Denimal, J.J. and S. Camiz. 2001. Exact conditional tests for a reciprocal interpretation of hierarchical classifications built on a two-way table. Metron (in press).

  • Camiz, S. 1988. Expert systems: utility in community studies and examples. Coenoses 3(1): 33-39.

    'systems: utility in community studies and examples ' () 3 Coenoses : 33 -39.

  • Benzécri, J.P. et coll. 1973-82. L'Analyse des Donnees. 2 vol., Dunod, Paris.

    L'Analyse des Donnees , ().

  • Bertin, J. 1977. La graphique et le traitement graphique de l'information. Flammarion, Paris.

    La graphique et le traitement graphique de l'information , ().

  • Gauch, H.G. and R.H. Whittaker. 1981. Hierarchical classification of community data. J. Ecol. 69: 537-557.

    'Hierarchical classification of community data ' () 69 J. Ecol. : 537 -557.

  • Feoli, E. and L. Orlóci. 1979. Analysis of concentration and detection of underlying factors in structured tables. Vegetatio 40:49-54.

    'Analysis of concentration and detection of underlying factors in structured tables ' () 40 Vegetatio : 49 -54.

    • Search Google Scholar
  • Diday, E. 1971. La méthode des nuées dynamiques. Revue de Statistique Appliquée 19(2): 19-34.

    'La méthode des nuées dynamiques ' () 19 Revue de Statistique Appliquée : 19 -34.

  • Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden.

    Introduction to the Exploration of Multivariate Biological Data. , ().

  • Orlóci, L. and N. Kenkel. 1987. Data Analysis in Population and Community Ecology. Department of Plant Sciences, the University of Western Ontario, London, Canada.

    Data Analysis in Population and Community Ecology. , ().

  • Podani, J. and E. Feoli. 1991. A general strategy for the simultaneous classification of variables and objects in ecological data tables. J. Veg Sci. 2: 435-444.

    'A general strategy for the simultaneous classification of variables and objects in ecological data tables ' () 2 J. Veg Sci. : 435 -444.

    • Search Google Scholar