View More View Less
  • 1 GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Restricted access

Abstract

Environmental changes have been rapidly increasing in the last decades, causing unprecedented shifts in biodiversity. The impacts of biodiversity changes on ecosystem processes depend on the traits of affected species and their functional redundancy at the community level. The generated data on biodiversity-functioning in marine environments are still fragmentary and predictions on how species, communities and ecosystems will respond to the ongoing global changes are still uncertain. This selection of manuscripts presents the efforts of researchers around the world towards a better understanding on the mechanisms driving biodiversity and functioning patterns in marine ecosystems. The issue is composed of studies about first records of diversity and single species patterns in overlooked marine communities, effects of pollution in shaping species composition, foundation species and the impact of their loss on local communities, and the relevance of ecological interactions and species’ traits in structuring marine food webs. We conclude that more field and experimental studies combined to modelling are needed for understanding mechanisms that currently determine the structure and functioning of ecosystems and for improving predictions under global change scenarios.

  • Abessa, D.M.S., B.R.F. Rachid, L.P. Zaroni, M.R. Gasparro, Y.A. Pinto, M.C. Bícego, M.A. Hortellan, J. E. S. Sarkis, P. Muniz, L.B. Moreira and E.C.P.M. Sousa. 2019. Natural factors and chemical contamination control the structure of macrobenthic communities in the Santos Estuarine System (SP, Brazil). Community Ecol. 20:121137.

    • Search Google Scholar
    • Export Citation
  • Berg, S., A. Pimenov, C. Palmer, M. Emmerson and T. Jonsson. 2015. Ecological communities are vulnerable to realistic extinction sequences. Oikos 124:486496.

    • Search Google Scholar
    • Export Citation
  • Bradshaw, W.E. and C.M. Holzapfel. 2006. Evolutionary response to rapid climate change. Science 312:14771478.

  • Bruno, J.F., J.J. Stachowicz and M.D. Bertness. 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18:119125.

  • Bruno, J.F. and M.I. O’Connor. 2005. Cascading effects of predator diversity and omnivory in a marine food web. Ecol. Lett. 8:10481056.

    • Search Google Scholar
    • Export Citation
  • Cadier, C. and A. Frouws. 2019. Experimental harvest in a tropical seagrass meadow leads to shift in associated benthic communities. Community Ecol. 20:138148.

    • Search Google Scholar
    • Export Citation
  • Cardinale, B.J., J.E. Duffy, A. Gonzalez, D.U. Hooper, C. Perrings, P. Venail, A. Narwani, G.M. Mace, D. Tilman, D. A. Wardle and A.P. Kinzig. 2012. Biodiversity loss and its impact on humanity. Nature 486(7401): 59.

    • Search Google Scholar
    • Export Citation
  • Chapin III, F.S., E.S. Zavaleta, V.T. Eviner, R.L. Naylor, P.M. Vitousek, H.L. Reynolds, D.U. Hooper, S. Lavorel, O.E. Sala, S.E. Hobbie and M.C. Mack. 2000. Consequences of changing biodiversity. Nature 405(6783): 234.

    • Search Google Scholar
    • Export Citation
  • Dayton, P.K. 1972. Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. In: Proceedings of the colloquium on conservation problems in Antarctica. Allen Press, Lawrence, Kansas, USA. pp. 8196.

    • Search Google Scholar
    • Export Citation
  • Díaz, S., J. Fargione, F.S. Chapin III and D. Tilman. 2006. Biodiversity loss threatens human well-being. PLoS Biol. 4(8): e277.

  • Golinia, P., A. Nasrolahi and F.R. Barboza. 2019. Biofouling in the Southern Caspian Sea: recruitment and successional patterns in a low diversity region. Community Ecol. 20:110120.

    • Search Google Scholar
    • Export Citation
  • Hoegh-Guldberg, O. and J.F. Bruno. 2010. The impact of climate change on the world's marine ecosystems. Science 328(5985): 15231528.

  • Hooper, D.U., F.S. Chapin III, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J.H. Lawton, D.M. Lodge, M. Loreau, S. Naeem and B. Schmid. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75(1): 335.

    • Search Google Scholar
    • Export Citation
  • Hooper, D.U., E.C. Adair, B.J. Cardinale, J.E. Byrnes, B.A. Hungate, K.L. Matulich, A. Gonzalez, J.E. Duffy, L. Gamfeldt and M.I. O’Connor. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401): 105.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, G.E. 1957. Concluding remarks. Cold Springs Harbor Symp. Quant. Biol. 22:415427.

  • Hutchinson, G.E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93(870): 145159.

  • Maguire Jr, B. 1973. Niche response structure and the analytical potentials of its relationship to the habitat. Am. Nat. 107(954): 213246.

    • Search Google Scholar
    • Export Citation
  • Olmo Gilabert, R., A.F.N. López, G.C. Agüero, J.C. Molinero, U. Sommer and M. Scotti. 2019. Body size and mobility explain species centralities in the Gulf of California food web. Community Ecol. 20:149160.

    • Search Google Scholar
    • Export Citation
  • Paine, R.T. 1966. Food web complexity and species diversity. Am. Nat. 100(910): 6575.

  • Pironon, S., J. Villellas, W. Thuiller, V.M. Eckhart, M.A. Geber, D.A. Moeller and M.B. García. 2018. The ‘Hutchinsonian niche'as an assemblage of demographic niches: implications for species geographic ranges. Ecography 41(7): 11031113.

    • Search Google Scholar
    • Export Citation
  • Price, T.D., A. Qvarnström and D.E. Irwin. 2003. The role of phenotypic plasticity in driving genetic evolution. Proc. Royal Soc. London B Biol. 270(1523): 14331440.

    • Search Google Scholar
    • Export Citation
  • Reiss, J., J.R. Bridle, J.M. Montoya and G. Woodward. 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol. 24(9): 505514.

    • Search Google Scholar
    • Export Citation
  • Tilman, D., P.B. Reich and F. Isbell. 2012. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. P. Natl. Acad. Sci. USA 109(26): 1039410397.

    • Search Google Scholar
    • Export Citation
  • Ulanowicz, R.E. 2004. Quantitative methods for ecological network analysis. Comput. Biol. Chem. 28:321339.

  • Violle, C., M.L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116(5): 882892.

    • Search Google Scholar
    • Export Citation
  • Williams, S.E., L.P. Shoo, J.L. Isaac, A.A. Hoffmann and G. Langham. 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6(12): e325.

    • Search Google Scholar
    • Export Citation
  • Worm, B., E.D. Barbier, N. Beaumont, J.E. Duffy, C. Folke, B.S. Halpern, J.B.C. Jackson, H.K. Lotze, F. Micheli, S.R. Palumbi, E. Sala, K.A. Selkoe, J.J. Stachowicz and R. Watson. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314(5800): 787790.

    • Search Google Scholar
    • Export Citation
  • Yachi, S. and M. Loreau. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. P. Natl. Acad. Sci. USA 96(4): 14631468.

    • Search Google Scholar
    • Export Citation