Authors:
M. Idbella Hassan II University, Casablanca, Morocco
University of Naples Federico II, via Università 100, 80055 Portici (NA), Italy

Search for other papers by M. Idbella in
Current site
Google Scholar
PubMed
Close
,
M. Zotti University of Naples Federico II, via Università 100, 80055 Portici (NA), Italy

Search for other papers by M. Zotti in
Current site
Google Scholar
PubMed
Close
,
G. Cesarano University of Naples Federico II, via Università 100, 80055 Portici (NA), Italy

Search for other papers by G. Cesarano in
Current site
Google Scholar
PubMed
Close
,
T. Fechtali Hassan II University, Casablanca, Morocco

Search for other papers by T. Fechtali in
Current site
Google Scholar
PubMed
Close
,
S. Mazzoleni University of Naples Federico II, via Università 100, 80055 Portici (NA), Italy

Search for other papers by S. Mazzoleni in
Current site
Google Scholar
PubMed
Close
, and
G. Bonanomi University of Naples Federico II, via Università 100, 80055 Portici (NA), Italy

Search for other papers by G. Bonanomi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Plant litter decomposition is a crucial process of nutrient cycling within ecosystems. However, many studies have shown that, apart from its several beneficial effects, organic matter decomposition can be disadvantageous to seed germination, seedling growth, and physiological activity of plants. Litter decomposition was reported to affect both plants and their associated soil microbial communities. The aim of this work was to test the relationships between seed-associated endophytic fungi on the either positive or negative plant's response to different litter types. Leaf material of four species was collected and used in a decomposition experiment inside a growth chamber for 120 days. The plant growth experiment was set in a greenhouse using Trifolium repens and Triticum durum with and without their associated endophytic fungi in the presence of the different litter species at two decay levels (fresh litter and after 120 days of decomposition). Results demonstrated that fresh litter exerted a strong inhibition effect on the plant total biomass when compared to decomposed litter. Moreover, seed-associated endophytic fungi enhanced the inhibitory effect of litter in the observed experimental conditions. The removal of seed-associated endophytic fungi improved the capacity of tested plants to resist to litter inhibitory effect.

  • Aerts, R . 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439449.

    • Search Google Scholar
    • Export Citation
  • An, M., Pratley, J.E. and Haig, T. 2001. Phytotoxicity of, Vulpia residues. IV. Dynamics of allelochemicals during decomposition of Vulpia residues and their corresponding phytotoxicity. J. Chem. Ecol. 27:95107.

    • Search Google Scholar
    • Export Citation
  • Bamisile, B.S., Dash, C.K., Akutse, K.S., Keppanan, R. and Wang, L. 2018. Fungal endophytes: beyond herbivore management. Front. Microbiol. 9:544.

    • Search Google Scholar
    • Export Citation
  • Berg, B. and Laskowski, R. 2005. Litter decomposition: a guide to carbon and nutrient turnover. Adv. Ecol. Res. 38:34.

  • Berg, B. and McClaugherty, C. 2014. Plant Litter: Decomposition, Humus Formation and Carbon Sequestration. Third Edition. Springer-Verlag, Berlin.

    • Search Google Scholar
    • Export Citation
  • Blum, U., Shafer, S.R. and Lehman, M.E. 1999. Evidence of inhibitory allelopathic interactions involving phenolic acids in field soil: concepts vs an experimental model. Crit. Rev. Plant Sci. 18:673693.

    • Search Google Scholar
    • Export Citation
  • Blum, U . 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24:685708.

    • Search Google Scholar
    • Export Citation
  • Bonanomi, G., Incerti, G., Barile, E., Capodilupo, M., Antignani, V., Mingo, A., Lanzotti, V., Scala, F. and Mazzoleni, S. 2011. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy. New Phytol. 191:10181030.

    • Search Google Scholar
    • Export Citation
  • Bonanomi, G., Incerti, G., Giannino, F., Mingo, A., Lanzotti, V. and Mazzoleni, S. 2013. Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios. Soil Biol. Biochem. 56:4048.

    • Search Google Scholar
    • Export Citation
  • Bonanomi, G., Cesarano, G., Lombardi, N., Motti, R., Scala, F., Mazzoleni, S. and Incerti, G. 2017. Litter chemistry explains contrasting feeding preferences of bacteria, fungi, and higher plants. Sci. Rep. 7:9208.

    • Search Google Scholar
    • Export Citation
  • Bonanomi, G., Rietkerk, M., Dekker, S. et al. 2005. Negative plant–soil feedback and positive species interaction in a herbaceous plant community. Plant Ecol. 181:269278.

    • Search Google Scholar
    • Export Citation
  • Bonanomi, G., Sicurezza, M.G., Caporaso, S., Esposito, A. and Mazzoleni, S. 2006. Phytotoxicity dynamics of decaying plant materials. New Phytol. 169:571578.

    • Search Google Scholar
    • Export Citation
  • Campanile, G., Ruscelli, A. and Luisi, N. 2007. Antagonistic activity of endophytic fungi towards, Diplodia corticola assessed by in vitro and in planta tests. Eur. J. Plant Pathol. 117:237246.

    • Search Google Scholar
    • Export Citation
  • Cao, R., Liu, X.G., Gao, K.X., Kang, M.K., Z.S. Gjf, Dai, Y. and Wang, X. 2009. Mycoparasitism of endophytic fungi isolated from reed on soilborne phytopathogenic fungi and production of cell wall-degrading enzymes in vitro. Curr. Microbiol. 59:584592.

    • Search Google Scholar
    • Export Citation
  • Cesarano, G., Zotti, M., Antignani, V., Marra, R., Scala, F. and Bonanomi, G. 2017. Soil sickness and negative plant-soil feedback: a reappraisal of hypothesis. Int. J. Plant Pathol. 99:545570.

    • Search Google Scholar
    • Export Citation
  • Cherry, J.R., Lamsa, M.H., Schneider, P., Vind, J., Svendsen, A., Jones, A. and Pedersen, A.H. 1999. Directed evolution of a fungal peroxidase. Nat. Biotechnol. 17:379384.

    • Search Google Scholar
    • Export Citation
  • Chou, C.H. and Patrick, Z.A. 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J. Chem. Ecol. 2:369387.

    • Search Google Scholar
    • Export Citation
  • Cleveland, C.C. and Liptzin, D. 2007. C:N:P stoichiometry in soil: is there a “Redfield Ratio” for the microbial biomass? Biogeochemistry 85:235252.

    • Search Google Scholar
    • Export Citation
  • Cochrane, V.W . 1948. The role of plant residues in the etiology of root rot. Phytopathology 38:185196.

  • Dowson, C.G., Rayner, A.D.M. and Boddy, L. 1988. Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter I. Initial establishment. New Phytol. 109:335341.

    • Search Google Scholar
    • Export Citation
  • Elmi, A.A. and West, C.P. 1995. Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol. 131:6167.

    • Search Google Scholar
    • Export Citation
  • Fukasawa, Y., Osono, T. and Takeda, H. 2009. Effects of attack of saprobic fungi on twig litter decomposition by endophytic fungi. Ecol. Res. 24:10671073.

    • Search Google Scholar
    • Export Citation
  • Geisen, S., Kostenko, O., Cnossen, M.C., ten Hooven, F.C., Vreš, B. and van der Putten, W.H. 2017. Seed and root endophytic fungi in a range expanding and a related plant species. Frontiers Microbiol. 8:1645.

    • Search Google Scholar
    • Export Citation
  • Gessner, M.O . 2005. Proximate lignin and cellulose. In: Graca, M.A.S., Bärlocher, F. and Gessner, M.O. (eds.), Methods to Study Litter Decomposition. A Practical Guide. Springer Verlag, The Netherlands. pp. 115120.

    • Search Google Scholar
    • Export Citation
  • Giordano, L., Gonthier, P., Varese, G.C., Miserere, L. and Nicolotti, G. 2009. Mycobiota inhabiting sapwood of healthy and declining Scots pine (Pinus sylvestris L.) trees in the Alps. Fungal Divers. 38:6983.

    • Search Google Scholar
    • Export Citation
  • Hardoim, P.R., Van Overbeek, L.S., Berg, G., Pirttilä, A.M., Compant, S., Campisano, A. et al. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79:293320.

    • Search Google Scholar
    • Export Citation
  • Hata, K., Tsuda, M. and Futai, K. 1998. Seasonal and needle age-dependent changes of the endophytic mycobiota in, Pinus thunbergii and Pinus densiflora needles. Can. J. Bot. 76:245250.

    • Search Google Scholar
    • Export Citation
  • Hyde, K.D. and Soytong, K. 2008. The fungal endophyte dilemma. Fungal Divers. 33:163173.

  • Inderjit, I . 2005. Soil microorganisms: an important determinant of allelopathic activity. Plant Soil. 274:227236.

  • Jäderlund, A., Zackrisson, O. and Nilsson, M.C. 1996. Effect of bilberry (Vaccinium myrtillus L.) litter on seed germination and early seedling growth of four boreal tree species. J. Chem. Ecol. 22:973986.

    • Search Google Scholar
    • Export Citation
  • Kia, S.H., Glynou, K., Nau, T., Thines, M., Piepenbring, M. and Macia-Vicente, J.G. 2017. Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants. ISME J. 11:777790.

    • Search Google Scholar
    • Export Citation
  • Kjoller, A. and Struwe, S. 1992. Functional groups of micro-fungi in decomposition. In: Carroll, G.C. and Wicklow, D.T. (eds.) The Fungal Community: Its Organization and Role in the Ecosystem. Marcel Dekker, New York. 2:619630.

    • Search Google Scholar
    • Export Citation
  • Krishna, M.P. and Mohan, M. 2017. Litter decomposition in forest ecosystems: a review. Energ. Ecol. Environ. 4:236249.

  • Li, L.F., Yang, A. and Zhao, Z.W. 2005. Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol Ecol. 54:367373.

    • Search Google Scholar
    • Export Citation
  • Loffredo, E., Monaci, L. and Senesi, N. 2005. Humic substances can modulate the allelopathic potential of caffeic, ferulic, and salicylic acids for seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.). J. Agric. Food Chem. 53:94249430.

    • Search Google Scholar
    • Export Citation
  • Lyons, P.C., Evans, J.J. and Bacon, C.W. 1990. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol. (Rockville). 92:726732.

    • Search Google Scholar
    • Export Citation
  • Makino, T., Takahashi, T., Sakurai, Y. and Nanzyo, M. 1996. Influence of soil chemical properties on adsorption and oxidation of phenolic acids in soil suspension. Soil Sci. Plant Nutr. 42:867879.

    • Search Google Scholar
    • Export Citation
  • Malinowski, D.P., Alloush, G.A. and Belesky, D.P. 2000. Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227:115126.

    • Search Google Scholar
    • Export Citation
  • Manzoni, S., Trofymow, J.A., Jackson, R.B. and Porporato, A. 2010. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol. Monogr. 80:89106.

    • Search Google Scholar
    • Export Citation
  • Mayerhofer, M.S., Kernaghan, G. and Harper, K.A. 2012. The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119128.

    • Search Google Scholar
    • Export Citation
  • Mazzoleni, S., Bonanomi, G., Incerti, G., Chiusano, M.L., Termolino, P., Mingo, A., Senatore, M., Giannino, F., Cartenì, F., Rietkerk, M. and Lanzotti, V. 2015. Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant–soil feedbacks? New Phytol. 205:11951210.

    • Search Google Scholar
    • Export Citation
  • McGroddy, M.E., Daufresne, T. and Hedin, L.O. 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:23902401.

    • Search Google Scholar
    • Export Citation
  • Meentemeyer, V . 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59:465472.

  • Newsham, K.K . 2011. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 190:783793.

  • Omacini, M., Chaneton, E.J., Ghersa, C.M. and Otero, P. 2004. Do foliar endophytes affect grass litter decomposition? A microcosm approach using, Lolium multiflorum. Oikos 104:581590.

    • Search Google Scholar
    • Export Citation
  • Peay, K.G., Kennedy, P.G. and Talbot, J.M. 2016. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14:434447.

  • Pollock, J.L., Callaway, R.M., Thelen, G.C. and Holben, W.E. 2009. Catechin-metal interactions as a mechanism for conditional allelopathy by the invasive plant Centaurea maculosa. J. Ecol. 97:12341242.

    • Search Google Scholar
    • Export Citation
  • Purahong, W. and Hyde, K.D. 2011. Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers. 47:17.

    • Search Google Scholar
    • Export Citation
  • Puri, A., Padda, K.P. and Chanway, C.P. 2016. Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biol. Fertil. Soils 52:119125.

    • Search Google Scholar
    • Export Citation
  • Redman, R.S., Sheehan, K.B., Stout, R.G., Rodriguez, R.J. and Henson, J.M. 2002. Thermotolerance generated by plant/fungal symbiosis. Science 298:1581.

    • Search Google Scholar
    • Export Citation
  • Sadrati, N., Duoud, H., Zerroug, A., Duhamna, S. and Bouharati, S. 2013. Screening of antimicrobial and antioxidant secondary metabolites from endophytic fungi isolated from wheat (Triticum durum). J. Plant Prot. Res. 53:128136.

    • Search Google Scholar
    • Export Citation
  • Saikkonen, K., Faeth, S.H., Helander, M. and Sullivan, T.J. 1998. Fungal endophytes: A continuum of interactions with host plants. Annu. Rev. Ecol. Evol. Syst. 29:319343.

    • Search Google Scholar
    • Export Citation
  • Schenk, H.J., Callaway, R.M. and Mahall, B.E. 1999. Spatial root segregation: are plants territorial? Adv. Ecol. Res. 28:146180.

  • Schmidt, S.P., Carl, S.H., Edward, M.C., Norman, D.D., Smith, L.A., Harold, W.G. and Jimmy, L.H. 1982. Association of an endophytic fungus with fescue toxicity in steers fed Kentucky-31 tall fescue seed or hay. J. Anim. Sci. 55:12591263.

    • Search Google Scholar
    • Export Citation
  • Schulz, B., Rommert, A.K., Dammann, U., Aust, H.J. and Strack, D. 1999. The endophyte-host interaction: a balanced antagonism? Mycol. Res. 10:12751283.

    • Search Google Scholar
    • Export Citation
  • Shaukat, S.S., Siddiqui, I.A., Khan, G.H. and Zaki, M.J. 2002. Nematicidal and allelopathic potential of, Argemone mexicana, a tropical weed. Plant Soil 245:239247.

    • Search Google Scholar
    • Export Citation
  • Sikora, R.A., Pocasangre, L., Felde, A.Z., Niere, B., Vu, T.T. and Dababat, A.A. 2008. Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol. Control. 46:1523.

    • Search Google Scholar
    • Export Citation
  • Sikora, R.A., Schäfer, K. and Dababat, A.A. 2007. Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australas. Plant Path. 36:124134.

    • Search Google Scholar
    • Export Citation
  • Sieber, T.N. and Grünig, C.R. 2013. Fungal root endophytes. In: A. Eshel and T. Beeckman (eds.), Plant Roots – The Hidden Half. CRC Press, Boca Raton, FL. USA. Taylor & Francis Group. Chap. 38. pp. 149.

    • Search Google Scholar
    • Export Citation
  • Song, Z., Kennedy, P.G., Liew, F.J. and Schilling, J.S. 2017. Fungal endophytes as priority colonizers initiating wood decomposition. Funct. Ecol. 31:407418.

    • Search Google Scholar
    • Export Citation
  • Souto, C., Pellissier, F. and Chiapusio, G. 2000. Allelopathic effects of humus phenolics on growth and respiration of mycorrhizal fungi. J. Chem. Ecol. 26:20152023.

    • Search Google Scholar
    • Export Citation
  • Suryanarayanan, T.S . 2013. Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol. 6:561568.

  • Van der Putten, W.H., Peters, B.A.M. and van den Berg, M.S. 1997. Effect of litter on substrate conditions and growth of emergent macrophytes. New Phytol. 135:527537.

    • Search Google Scholar
    • Export Citation
  • Vega, F.E., Posada, F., Aime, M.C., Ripoll, M.P., Infante, F. and Rehner, S.A. 2008. Entomopathogenic fungal endophytes. Biol. Control. 46:7282.

    • Search Google Scholar
    • Export Citation
  • Vesterdal, L . 1999. Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Can. J. For. Res. 29:95105.

    • Search Google Scholar
    • Export Citation
  • Vu, T., Hauschild, R. and Sikora, R.A. 2006. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847852.

    • Search Google Scholar
    • Export Citation
  • Walker, T.S., Bais, H.P., Grotewold, E. and Vivanco, J.M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132:4451.

  • Yenish, J.P., Worsham, A.D. and Chilton, W.S. 1995. Disappearance of DIBOA-glucoside, DIBOA, and BOA from rye (Secale cereale L.) cover crop residue. Weed Sci. 43:1820.

    • Search Google Scholar
    • Export Citation
  • Yue, Q., Bacon, C.W. and Richardson, M.D. 1998. Biotransformation of 2-benzoxazolinone and 6-methoxy-benzoxazolinone by, Fusarium moniliforme. Phytochemistry 48:451454.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Zengwen, L.I.U., Nan, T.I.A.N., Nhu Trung, L.U.C., Bochao, Z.H.U. and Yuanhao, B.I.N.G. 2015. Allelopathic effects of decomposed leaf litter from intercropped trees on rape. Turk. J. Agric For. 39:898908.

    • Search Google Scholar
    • Export Citation
  • Zikmundová, M., Drandarov, K., Bigler, L., Hesse, M. and Werner, C. 2002. Biotransformation of 2-benzoxazolinone and 2-hy-droxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl. Environ. Microbiol. 68:48634870.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 78 0 0
Nov 2024 47 0 0
Dec 2024 38 0 0
Jan 2025 66 0 0
Feb 2025 70 0 0
Mar 2025 28 0 0
Apr 2025 0 0 0