Plant litter decomposition is a crucial process of nutrient cycling within ecosystems. However, many studies have shown that, apart from its several beneficial effects, organic matter decomposition can be disadvantageous to seed germination, seedling growth, and physiological activity of plants. Litter decomposition was reported to affect both plants and their associated soil microbial communities. The aim of this work was to test the relationships between seed-associated endophytic fungi on the either positive or negative plant's response to different litter types. Leaf material of four species was collected and used in a decomposition experiment inside a growth chamber for 120 days. The plant growth experiment was set in a greenhouse using Trifolium repens and Triticum durum with and without their associated endophytic fungi in the presence of the different litter species at two decay levels (fresh litter and after 120 days of decomposition). Results demonstrated that fresh litter exerted a strong inhibition effect on the plant total biomass when compared to decomposed litter. Moreover, seed-associated endophytic fungi enhanced the inhibitory effect of litter in the observed experimental conditions. The removal of seed-associated endophytic fungi improved the capacity of tested plants to resist to litter inhibitory effect.
Aerts, R . 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449.
An, M., Pratley, J.E. and Haig, T. 2001. Phytotoxicity of, Vulpia residues. IV. Dynamics of allelochemicals during decomposition of Vulpia residues and their corresponding phytotoxicity. J. Chem. Ecol. 27:95–107.
Bamisile, B.S., Dash, C.K., Akutse, K.S., Keppanan, R. and Wang, L. 2018. Fungal endophytes: beyond herbivore management. Front. Microbiol. 9:544.
Berg, B. and Laskowski, R. 2005. Litter decomposition: a guide to carbon and nutrient turnover. Adv. Ecol. Res. 38:3–4.
Berg, B. and McClaugherty, C. 2014. Plant Litter: Decomposition, Humus Formation and Carbon Sequestration. Third Edition. Springer-Verlag, Berlin.
Blum, U., Shafer, S.R. and Lehman, M.E. 1999. Evidence of inhibitory allelopathic interactions involving phenolic acids in field soil: concepts vs an experimental model. Crit. Rev. Plant Sci. 18:673–693.
Blum, U . 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24:685–708.
Bonanomi, G., Incerti, G., Barile, E., Capodilupo, M., Antignani, V., Mingo, A., Lanzotti, V., Scala, F. and Mazzoleni, S. 2011. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy. New Phytol. 191:1018–1030.
Bonanomi, G., Incerti, G., Giannino, F., Mingo, A., Lanzotti, V. and Mazzoleni, S. 2013. Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios. Soil Biol. Biochem. 56:40–48.
Bonanomi, G., Cesarano, G., Lombardi, N., Motti, R., Scala, F., Mazzoleni, S. and Incerti, G. 2017. Litter chemistry explains contrasting feeding preferences of bacteria, fungi, and higher plants. Sci. Rep. 7:9208.
Bonanomi, G., Rietkerk, M., Dekker, S. et al. 2005. Negative plant–soil feedback and positive species interaction in a herbaceous plant community. Plant Ecol. 181:269–278.
Bonanomi, G., Sicurezza, M.G., Caporaso, S., Esposito, A. and Mazzoleni, S. 2006. Phytotoxicity dynamics of decaying plant materials. New Phytol. 169:571–578.
Campanile, G., Ruscelli, A. and Luisi, N. 2007. Antagonistic activity of endophytic fungi towards, Diplodia corticola assessed by in vitro and in planta tests. Eur. J. Plant Pathol. 117:237–246.
Cao, R., Liu, X.G., Gao, K.X., Kang, M.K., Z.S. Gjf, Dai, Y. and Wang, X. 2009. Mycoparasitism of endophytic fungi isolated from reed on soilborne phytopathogenic fungi and production of cell wall-degrading enzymes in vitro. Curr. Microbiol. 59:584–592.
Cesarano, G., Zotti, M., Antignani, V., Marra, R., Scala, F. and Bonanomi, G. 2017. Soil sickness and negative plant-soil feedback: a reappraisal of hypothesis. Int. J. Plant Pathol. 99:545–570.
Cherry, J.R., Lamsa, M.H., Schneider, P., Vind, J., Svendsen, A., Jones, A. and Pedersen, A.H. 1999. Directed evolution of a fungal peroxidase. Nat. Biotechnol. 17:379–384.
Chou, C.H. and Patrick, Z.A. 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J. Chem. Ecol. 2:369–387.
Cleveland, C.C. and Liptzin, D. 2007. C:N:P stoichiometry in soil: is there a “Redfield Ratio” for the microbial biomass? Biogeochemistry 85:235–252.
Cochrane, V.W . 1948. The role of plant residues in the etiology of root rot. Phytopathology 38:185–196.
Dowson, C.G., Rayner, A.D.M. and Boddy, L. 1988. Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter I. Initial establishment. New Phytol. 109:335–341.
Elmi, A.A. and West, C.P. 1995. Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol. 131:61–67.
Fukasawa, Y., Osono, T. and Takeda, H. 2009. Effects of attack of saprobic fungi on twig litter decomposition by endophytic fungi. Ecol. Res. 24:1067–1073.
Geisen, S., Kostenko, O., Cnossen, M.C., ten Hooven, F.C., Vreš, B. and van der Putten, W.H. 2017. Seed and root endophytic fungi in a range expanding and a related plant species. Frontiers Microbiol. 8:1645.
Gessner, M.O . 2005. Proximate lignin and cellulose. In: Graca, M.A.S., Bärlocher, F. and Gessner, M.O. (eds.), Methods to Study Litter Decomposition. A Practical Guide. Springer Verlag, The Netherlands. pp. 115–120.
Giordano, L., Gonthier, P., Varese, G.C., Miserere, L. and Nicolotti, G. 2009. Mycobiota inhabiting sapwood of healthy and declining Scots pine (Pinus sylvestris L.) trees in the Alps. Fungal Divers. 38:69–83.
Hardoim, P.R., Van Overbeek, L.S., Berg, G., Pirttilä, A.M., Compant, S., Campisano, A. et al. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79:293–320.
Hata, K., Tsuda, M. and Futai, K. 1998. Seasonal and needle age-dependent changes of the endophytic mycobiota in, Pinus thunbergii and Pinus densiflora needles. Can. J. Bot. 76:245–250.
Hyde, K.D. and Soytong, K. 2008. The fungal endophyte dilemma. Fungal Divers. 33:163–173.
Inderjit, I . 2005. Soil microorganisms: an important determinant of allelopathic activity. Plant Soil. 274:227–236.
Jäderlund, A., Zackrisson, O. and Nilsson, M.C. 1996. Effect of bilberry (Vaccinium myrtillus L.) litter on seed germination and early seedling growth of four boreal tree species. J. Chem. Ecol. 22:973–986.
Kia, S.H., Glynou, K., Nau, T., Thines, M., Piepenbring, M. and Macia-Vicente, J.G. 2017. Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants. ISME J. 11:777–790.
Kjoller, A. and Struwe, S. 1992. Functional groups of micro-fungi in decomposition. In: Carroll, G.C. and Wicklow, D.T. (eds.) The Fungal Community: Its Organization and Role in the Ecosystem. Marcel Dekker, New York. 2:619–630.
Krishna, M.P. and Mohan, M. 2017. Litter decomposition in forest ecosystems: a review. Energ. Ecol. Environ. 4:236–249.
Li, L.F., Yang, A. and Zhao, Z.W. 2005. Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol Ecol. 54:367–373.
Loffredo, E., Monaci, L. and Senesi, N. 2005. Humic substances can modulate the allelopathic potential of caffeic, ferulic, and salicylic acids for seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.). J. Agric. Food Chem. 53:9424–9430.
Lyons, P.C., Evans, J.J. and Bacon, C.W. 1990. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol. (Rockville). 92:726–732.
Makino, T., Takahashi, T., Sakurai, Y. and Nanzyo, M. 1996. Influence of soil chemical properties on adsorption and oxidation of phenolic acids in soil suspension. Soil Sci. Plant Nutr. 42:867–879.
Malinowski, D.P., Alloush, G.A. and Belesky, D.P. 2000. Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227:115–126.
Manzoni, S., Trofymow, J.A., Jackson, R.B. and Porporato, A. 2010. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol. Monogr. 80:89–106.
Mayerhofer, M.S., Kernaghan, G. and Harper, K.A. 2012. The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128.
Mazzoleni, S., Bonanomi, G., Incerti, G., Chiusano, M.L., Termolino, P., Mingo, A., Senatore, M., Giannino, F., Cartenì, F., Rietkerk, M. and Lanzotti, V. 2015. Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant–soil feedbacks? New Phytol. 205:1195–1210.
McGroddy, M.E., Daufresne, T. and Hedin, L.O. 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401.
Meentemeyer, V . 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472.
Newsham, K.K . 2011. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 190:783–793.
Omacini, M., Chaneton, E.J., Ghersa, C.M. and Otero, P. 2004. Do foliar endophytes affect grass litter decomposition? A microcosm approach using, Lolium multiflorum. Oikos 104:581–590.
Peay, K.G., Kennedy, P.G. and Talbot, J.M. 2016. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14:434–447.
Pollock, J.L., Callaway, R.M., Thelen, G.C. and Holben, W.E. 2009. Catechin-metal interactions as a mechanism for conditional allelopathy by the invasive plant Centaurea maculosa. J. Ecol. 97:1234–1242.
Purahong, W. and Hyde, K.D. 2011. Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers. 47:1–7.
Puri, A., Padda, K.P. and Chanway, C.P. 2016. Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biol. Fertil. Soils 52:119–125.
Redman, R.S., Sheehan, K.B., Stout, R.G., Rodriguez, R.J. and Henson, J.M. 2002. Thermotolerance generated by plant/fungal symbiosis. Science 298:1581.
Sadrati, N., Duoud, H., Zerroug, A., Duhamna, S. and Bouharati, S. 2013. Screening of antimicrobial and antioxidant secondary metabolites from endophytic fungi isolated from wheat (Triticum durum). J. Plant Prot. Res. 53:128–136.
Saikkonen, K., Faeth, S.H., Helander, M. and Sullivan, T.J. 1998. Fungal endophytes: A continuum of interactions with host plants. Annu. Rev. Ecol. Evol. Syst. 29:319–343.
Schenk, H.J., Callaway, R.M. and Mahall, B.E. 1999. Spatial root segregation: are plants territorial? Adv. Ecol. Res. 28:146–180.
Schmidt, S.P., Carl, S.H., Edward, M.C., Norman, D.D., Smith, L.A., Harold, W.G. and Jimmy, L.H. 1982. Association of an endophytic fungus with fescue toxicity in steers fed Kentucky-31 tall fescue seed or hay. J. Anim. Sci. 55:1259–1263.
Schulz, B., Rommert, A.K., Dammann, U., Aust, H.J. and Strack, D. 1999. The endophyte-host interaction: a balanced antagonism? Mycol. Res. 10:1275–1283.
Shaukat, S.S., Siddiqui, I.A., Khan, G.H. and Zaki, M.J. 2002. Nematicidal and allelopathic potential of, Argemone mexicana, a tropical weed. Plant Soil 245:239–247.
Sikora, R.A., Pocasangre, L., Felde, A.Z., Niere, B., Vu, T.T. and Dababat, A.A. 2008. Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol. Control. 46:15–23.
Sikora, R.A., Schäfer, K. and Dababat, A.A. 2007. Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australas. Plant Path. 36:124–134.
Sieber, T.N. and Grünig, C.R. 2013. Fungal root endophytes. In: A. Eshel and T. Beeckman (eds.), Plant Roots – The Hidden Half. CRC Press, Boca Raton, FL. USA. Taylor & Francis Group. Chap. 38. pp. 1–49.
Song, Z., Kennedy, P.G., Liew, F.J. and Schilling, J.S. 2017. Fungal endophytes as priority colonizers initiating wood decomposition. Funct. Ecol. 31:407–418.
Souto, C., Pellissier, F. and Chiapusio, G. 2000. Allelopathic effects of humus phenolics on growth and respiration of mycorrhizal fungi. J. Chem. Ecol. 26:2015–2023.
Suryanarayanan, T.S . 2013. Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol. 6:561–568.
Van der Putten, W.H., Peters, B.A.M. and van den Berg, M.S. 1997. Effect of litter on substrate conditions and growth of emergent macrophytes. New Phytol. 135:527–537.
Vega, F.E., Posada, F., Aime, M.C., Ripoll, M.P., Infante, F. and Rehner, S.A. 2008. Entomopathogenic fungal endophytes. Biol. Control. 46:72–82.
Vesterdal, L . 1999. Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Can. J. For. Res. 29:95–105.
Vu, T., Hauschild, R. and Sikora, R.A. 2006. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–852.
Walker, T.S., Bais, H.P., Grotewold, E. and Vivanco, J.M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132:44–51.
Yenish, J.P., Worsham, A.D. and Chilton, W.S. 1995. Disappearance of DIBOA-glucoside, DIBOA, and BOA from rye (Secale cereale L.) cover crop residue. Weed Sci. 43:18–20.
Yue, Q., Bacon, C.W. and Richardson, M.D. 1998. Biotransformation of 2-benzoxazolinone and 6-methoxy-benzoxazolinone by, Fusarium moniliforme. Phytochemistry 48:451–454.
Zhang, X., Zengwen, L.I.U., Nan, T.I.A.N., Nhu Trung, L.U.C., Bochao, Z.H.U. and Yuanhao, B.I.N.G. 2015. Allelopathic effects of decomposed leaf litter from intercropped trees on rape. Turk. J. Agric For. 39:898–908.
Zikmundová, M., Drandarov, K., Bigler, L., Hesse, M. and Werner, C. 2002. Biotransformation of 2-benzoxazolinone and 2-hy-droxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl. Environ. Microbiol. 68:4863–4870.