Authors:
I. Hahn Department of Plant Taxonomy and Ecology, L. Eötvös Unversity H-1117 Budapest, Pázmány P. sétány 1/C

Search for other papers by I. Hahn in
Current site
Google Scholar
PubMed
Close
and
I. Scheuring Department of Plant taxonomy and Ecology, Research Group in Theoretical Biology and Ecology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary Please ask the editor of the journal.

Search for other papers by I. Scheuring in
Current site
Google Scholar
PubMed
Close
Restricted access

We performed a computer assisted experiment to test the accuracy of different ratio scales in estimating vegetation cover. Sixteen subjects estimated the cover level of artificial vegetation patterns displayed on the screen for various levels of resolution (from presence/absence to 100 different states, each measured on the ratio scale). We found that estimation error is minimum when the range of cover is divided into ten equal parts. Finer resolution gives less precise estimation since subjects tend to divide cover level into ten or at most twenty intervals in their mind.

  • Becking, R. W. 1957. The Zürich-Montpellier school of phytosociology. Bot. Rev. 23: 411-488.

    'The Zürich-Montpellier school of phytosociology ' () 23 Bot. Rev. : 411 -488 .

  • Braun-Blanquet, J. 1964. Pflanzensoziologie, Grundzüge der Vege-tationskunde. 3. Aufl. Springer, Wien, New York.

    Pflanzensoziologie, Grundzüge der Vege-tationskunde. 3 , ().

  • Dietz, H. and T. Steinlein. 1996. Determination of plant species cover by means of image analysis. J. Veg. Sci. 7: 131-136.

    'Determination of plant species cover by means of image analysis ' () 7 J. Veg. Sci. : 131 -136 .

    • Search Google Scholar
  • Gotfryd, A. R. and I. C. Hansell. 1985. The impact of observer bias on multivariate analyses of vegetation structure. Oikos 45:223-234.

    'The impact of observer bias on multivariate analyses of vegetation structure ' () 45 Oikos : 223 -234 .

    • Search Google Scholar
  • Haslett, J. R. 1994. Community structure and the fractal dimensions of mountain habitats. J. Theoret. Biol. 167: 407-411.

    'Community structure and the fractal dimensions of mountain habitats ' () 167 J. Theoret. Biol. : 407 -411 .

    • Search Google Scholar
  • Hatton, T. J., N. E. West and P. S. Johnson. 1986. Relationships of the error associated with ocular estimation and percent cover. J. Range Manag. 39: 91-92.

    'Relationships of the error associated with ocular estimation and percent cover ' () 39 J. Range Manag. : 91 -92 .

    • Search Google Scholar
  • Jensen, S. 1978. Influences of transformation of cover values on classification and ordination of lake vegetation. Vegetatio 39: 19-31.

    'Influences of transformation of cover values on classification and ordination of lake vegetation ' () 39 Vegetatio : 19 -31 .

    • Search Google Scholar
  • Kennedy, K. A. and P. A. Addison. 1987. Some consideration for the use of visual estimates of plant cover in biomonitoring. J. Ecol. 75: 151-157.

    'Some consideration for the use of visual estimates of plant cover in biomonitoring ' () 75 J. Ecol. : 151 -157 .

    • Search Google Scholar
  • Avena, G., C. Blasi, E. Feoli and A. Scoppola. 1981. Measurement of the predictive value of species lists for species cover in phytosociological samples. Vegetatio 45: 77-84.

    'Measurement of the predictive value of species lists for species cover in phytosociological samples ' () 45 Vegetatio : 77 -84 .

    • Search Google Scholar
  • Bannister, P. 1966. The use of subjective estimates of cover-abundance as the basis for ordination. J. Ecol. 54: 665-674.

    'The use of subjective estimates of cover-abundance as the basis for ordination ' () 54 J. Ecol. : 665 -674 .

    • Search Google Scholar
  • Peet, R. K., T. R. Wentworth and P. S. White. 1998. A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63: 262-274.

    'A flexible, multipurpose method for recording vegetation composition and structure ' () 63 Castanea : 262 -274 .

    • Search Google Scholar
  • Sugihara, G. and R. M. May. 1990. Applications of fractals in ecology. Trends. Ecol. Evol. 5: 79-86.

    'Applications of fractals in ecology ' () 5 Trends. Ecol. Evol. : 79 -86 .

  • Smith, A. D. 1944. A study of the reliability of range vegetation estimates. Ecology 25: 441-448.

    'A study of the reliability of range vegetation estimates ' () 25 Ecology : 441 -448 .

    • Search Google Scholar
  • Sykes, J. M., A. D. Horrill and M. D. Mountford. 1983. Use of visual cover assessments as quantitative estimators of some British woodland taxa. J. Ecol. 71: 437-450.

    'Use of visual cover assessments as quantitative estimators of some British woodland taxa ' () 71 J. Ecol. : 437 -450 .

    • Search Google Scholar
  • Zar, J. H. 1999. Biostatistical Analysis. 4th ed. Prentice Hall, Upper Saddle River, New Jersey. 663 pp.

    Biostatistical Analysis. , () 663 .

  • Klimes, L., M. Denĉák, M. Hájek, I. Jongepierová and T. Kuĉera. 2001. Scale-dependent biases in the species counts in grassland. J. Veg Sci. 12: 699-704.

    'Scale-dependent biases in the species counts in grassland ' () 12 J. Veg Sci. : 699 -704 .

    • Search Google Scholar
  • Leps, J. and V. Hadincová. 1992. How reliable are our vegetation analyses? J. Veg. Sci. 3: 119-124.

    'How reliable are our vegetation analyses ' () 3 J. Veg. Sci. : 119 -124 .

  • Londo, G. 1976. The decimal scale for relevés of permanent quadrats. Vegetatio 33: 61-64.

    'The decimal scale for relevés of permanent quadrats ' () 33 Vegetatio : 61 -64 .

  • Maarel, E. van der 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97-114.

    'Transformation of cover-abundance values in phytosociology and its effects on community similarity ' () 39 Vegetatio : 97 -114 .

    • Search Google Scholar
  • Milne, B. T. 1992. Spatial aggregation and neutral models in fractal landscapes. Am. Nat. 139: 32-57.

    'Spatial aggregation and neutral models in fractal landscapes ' () 139 Am. Nat. : 32 -57 .

    • Search Google Scholar
  • Noy-Meir, I. 1973. Data transformation in ecological ordination. I. Some advantages of non-centering. J. Ecol. 61: 329-341.

    'Data transformation in ecological ordination. I. Some advantages of non-centering ' () 61 J. Ecol. : 329 -341 .

    • Search Google Scholar
  • Noy-Meir, I., D. Walker and W. T. Williams. 1975. Data transformation in ecological ordination. II. On the meaning of data standardization. J. Ecol. 63: 779-800.

    'Data transformation in ecological ordination. II. On the meaning of data standardization ' () 63 J. Ecol. : 779 -800 .

    • Search Google Scholar
  • Aberdeen, J. E. C. 1958. The effect of quadrat size, plant size and plant distribution on frequency estimates in plant ecology. Aust. J. Bot. 6: 47-58

    'The effect of quadrat size, plant size and plant distribution on frequency estimates in plant ecology ' () 6 Aust. J. Bot. : 47 -58 .

    • Search Google Scholar
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 19 0 0
Nov 2024 24 0 0
Dec 2024 3 0 0
Jan 2025 13 0 0
Feb 2025 22 0 0
Mar 2025 21 0 0
Apr 2025 0 0 0