View More View Less
  • 1 Institute of Mathematics and Informatics, Szent István University Páter K. u. 1., H-2103 Gödöllő, Hungary
  • 2 Department of Environmental Sciences, University of Tuscia Via S. Camillo de Lellis 01100 Viterbo, Italy
  • 3 Department of Mathematics, Faculty of Science, University of Mansoura Mansoura, Egypt
Restricted access

For Lotka-Volterra population systems, a general model of state monitoring is presented. The model includes time-dependent environmental effects or direct human intervention (treatment) as control functions and, instead of the whole state vector, the densities of certain indicator species (distinguished or lumped together) are observed. Mathematical systems theory offers a sufficient condition for local observability in such systems. The latter means that, based on the above (dynamic) partial observation, the state of the population can be recovered, at least near equilibrium. The application of this sufficient condition is illustrated by three-species examples such as a one-predator two-prey system and a simple food chain.

  • Bernard, O., G. Sallet and A. Sciandra. 1998. Nonlinear observers for a class of biological systems: Application to validation of a phytoplanktonic growth model. IEEE Trans, on Automatic Control, 43, No. 8, August, 1056-1065.

    'Nonlinear observers for a class of biological systems: Application to validation of a phytoplanktonic growth model ' () 43 IEEE Trans, on Automatic Control : 1056 -1065.

    • Search Google Scholar
  • Farkas, G. 1998a Local controllability of reactions. J. Math. Chemistry 24: 1-14.

    'Local controllability of reactions ' () 24 J. Math. Chemistry : 1 -14.

  • Farkas, G. 1998b. On local observability of chemical systems. J. Math. Chemistry 24: 15-22.

    'On local observability of chemical systems ' () 24 J. Math. Chemistry : 15 -22.

  • Freedman, H. 1980. Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York.

    Deterministic Mathematical Models in Population Ecology , ().

  • Gámez, M.; R. Carreño, A. Kósa and Z. Varga. 2002. Observability in strategic models of selection. Biosystems (submitted)

    'Observability in strategic models of selection ' () Biosystems .

  • Gragnani, A. 2002. The role of toxicants on predator-prey dynamics. 5th ESMTB Conference on Mathematical Modelling and Computing in Biology and Medicin. 2-6 July, 2002, Milano, Italy. Abstracts, p. 179. (Proceedings with full papers in preparation)

    'The role of toxicants on predator-prey dynamics. 5th ESMTB Conference on Mathematical Modelling and Computing in Biology and Medicin. 2-6 July, 2002, Milano, Italy. Abstracts ' , , .

    • Search Google Scholar
  • Lee, E. B. and L. Markus. 1971. Foundations of Optimal Control Theory. Wiley, New York.

    Foundations of Optimal Control Theory , ().

  • Lotka, A.J. 1925. Elements of Physical Biology. Dover, New York.

    Elements of Physical Biology , ().

  • Metz, J. A. J. 1977. State space model for animal behaviour. Ann. Syst. Res. 6: 65-109.

    'State space model for animal behaviour ' () 6 Ann. Syst. Res. : 65 -109.

  • Metz, J. A. J. and O. Diekmann (eds.) 1986. The Dynamics of Physiologically Structured Populations, Springer Lecture Notes in Biomathematics 68.

    The Dynamics of Physiologically Structured Populations , ().

  • Szigeti, F., C. Vera and Z. Varga. 2002. Nonlinear system inversion applied to ecological monitoring. 15-th IFAC World Congress on Automatic Control, Barcelona 2002 (full paper, accepted).

    'Nonlinear system inversion applied to ecological monitoring' , , .

  • Varga, Z. 1989. On controllability of Fisher's model of selection. In: C. M. Dafermos, G. Ladas and G. Papanicolaou (eds.), Differential Equations. Marcel Dekker Publ., New York, pp. 717-723.

    On controllability of Fisher's model of selection , () 717 -723.

  • Varga, Z. 1992. On observability of Fisher's model of selection. Pure Mathematics and Applications. Ser. B., 3: 15-25.

    'On observability of Fisher's model of selection ' () 3 Pure Mathematics and Applications. Ser. B. : 15 -25.

    • Search Google Scholar
  • Volterra, V. 1931. Leçons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars, Paris.

    Leçons sur la théorie mathématique de la lutte pour la vie , ().

  • Yodzis, P. 1989. Introduction to Theoretical Ecology. Harper and Row, New York.

    Introduction to Theoretical Ecology , ().

  • Nagy G., S. Romagnoli, Z. Varga and L. Venzi. 2002. Le condizioni di ottimalità per la determinazione delle catture di pesce. XXXIX Convegno annuale della SIDEA, Societá Italiana di Economia Agraria, Firenze 12 - 14 settembre.

    Le condizioni di ottimalità per la determinazione delle catture di pesce. XXXIX Convegno annuale della SIDEA , ().

    • Search Google Scholar
  • Petrosjan, L. A. and V. V. Zakharov. 1997. Mathematical Models in Environmental Policy Analysis. Nova Science Publishers, Inc. N.Y USA.

    Mathematical Models in Environmental Policy Analysis , ().

  • Scarelli, A. and Z. Varga. 2002. Controllability of selection-mutation systems. BioSystems 65: 113-121.

    'Controllability of selection-mutation systems ' () 65 BioSystems : 113 -121.

  • Scudo, F. and Y. R. Ziegler (eds.) 1978. The Golden Age of Mathematical Ecology. Springer Verlag, Berlin.

    The Golden Age of Mathematical Ecology , ().