View More View Less
  • 1 Australian School of Environmental Studies, Griffith University Nathan, Qld. 4111, Australia
  • | 2 Australian School of Environmental Studies, Griffith University Nathan, Qld. 4111, Australia
Restricted access

In this paper, we use decision trees to construct models for predicting vegetation types from environmental attributes in a salt marsh. We examine a method for evaluating the worth of a decision tree and look at seven sources of uncertainty in the models produced, namely algorithmic, predictive, model, scenario, objective, context and scale. The accuracy of prediction of types was strongly affected by the scenario and scale, with the most dynamically variable attributes associated with poor prediction, while more static attributes performed better. However, examination of the misclassified samples showed that prediction of processes was much better, with local vegetation type-induced patterns nested within a broader environmental framework.

  • Beeston, G. R. and M. B. Dale. 1975. Multiple predictive analysis: a management tool. Proceedings of the Ecological Society of Australia 9:172-181.

    'Multiple predictive analysis: a management tool ' () Proceedings of the Ecological Society of Australia : 172 -181.

    • Search Google Scholar
  • Bengio, Y. and Y. Grandvalet 2003. No unbiased estimator of the variance of -fold cross-validation. Technical Report 1234, Dept. Inform. Rech. Opérat., Université Montréal.

  • Boerlijst, M. C. and P. Hogeweg. 1991. Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites. Physica D 48:17-28.

    'Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites ' () D 48 Physica : 17 -28.

    • Search Google Scholar
  • Chatfield, C. 1995. Model uncertainty, data mining and statistical-inference J. R. Statist. Soc. Series A, 158:419-466.

    'Model uncertainty, data mining and statistical-inferenc ' () 158 J. R. Statist. Soc. Series A, : 419 -466.

    • Search Google Scholar
  • Dale, M. B, 1999. The dynamics of diversity: mixed strategy systems Coenoses 13:105-113.

    'The dynamics of diversity: mixed strategy system ' () 13 Coenoses : 105 -113.

  • Hunt, E. B., J. Marin, and P. J. Stone. 1966. Experiments in Induction, Academic Press, New York.

    Experiments in Induction , ().

  • Dale, P. E. R. and M. B. Dale. 2002. Optimal classification to describe environmental change: pictures from the exposition. Community Ecology 3:19-29.

    'Optimal classification to describe environmental change: pictures from the exposition ' () Community Ecology : 19 -29.

    • Search Google Scholar
  • Hyafil, L. and R. L. Rivest. 1976. Constructing optimal binary decision trees is NP-complete. Information Processing Letters 5:15-17.

    'Constructing optimal binary decision trees is NP-complete ' () Information Processing Letters : 15 -17.

    • Search Google Scholar
  • Ramsey, J. B. and H-J. Yuan. 1990. The statistical properties of dimension calculations. Nonlinearity 3:155-176.

    'The statistical properties of dimension calculations ' () Nonlinearity : 155 -176.

  • Posse, C. 1995b. Projection pursuit exploratory data analysis. Computat. Statist. Data Anal. 20:669-687.

    'Projection pursuit exploratory data analysis ' () 20 Computat. Statist. Data Anal : 669 -687.

    • Search Google Scholar
  • Quinlan, J. R. 1993. C4.5: Programs for Machine Learning, Morgan Kaufmann: San Mateo, CA.

    C4.5: Programs for Machine Learning , ().

  • Picard, R. R. and K. N. Berk. 1990. Data Splitting. American Statistician 44:140-147.

    'Data Splitting ' () 44 American Statistician : 140 -147.

  • Posse, C. 1995a Tools for two-dimensional exploratory projection pursuit. J. Computer Graphics Statist. 4:83-100.

    'Tools for two-dimensional exploratory projection pursuit ' () J. Computer Graphics Statist : 83 -100.

    • Search Google Scholar
  • Murthy, S., S. Kasif and S. Salzberg. 1994. A system for induction of oblique decision trees. J. Artif. Intell. Res. 2:1-32.

    'A system for induction of oblique decision trees ' () J. Artif. Intell. Res .

  • Loehle, C. 1987. Hypothesis testing in ecology: psychological aspects and the importance of theory maturation. Quarterly Review of Biology 62:397-409.

    'Hypothesis testing in ecology: psychological aspects and the importance of theory maturation ' () 62 Quarterly Review of Biology : 397 -409.

    • Search Google Scholar
  • Proc. 8th International workshop Machine Learning, Morgan Kaufmann, San Mateo, CA. pp. 183-187.

    Proc. 8th International workshop Machine Learning , () 183 -187.

  • Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In: B. Petrov and F. Cáski (eds.) 2nd International Symposium on Information Theory, Akadémiai Kiadó, Budapest, pp. 267-281.

    'Information theory and an extension of the maximum likelihood principle ' , , .

    • Search Google Scholar
  • Allwein, EX., R. E. Schapire and Y. Singer. 2000. Reducing multi-class to binary: a unifying approach for margin classifiers. J. Machine learning Research 1:113-141.

    'Reducing multi-class to binary: a unifying approach for margin classifiers ' () J. Machine learning Research : 113 -141.

    • Search Google Scholar
  • Baxter, J. 2000. A model of inductive bias learning. J. Artif Intell. Res. 12:149-198.

    'A model of inductive bias learning ' () 12 J. Artif Intell. Res : 149 -198.

  • Dasarathy, B. V. and A. L. Lakshminarasimhan. 1976. Sequential learning employing unfamiliar teacher hypothesis (SLEUTH) with concurrent estimation of both parameters and teacher characteristics. International J. Computer Information Sciences 5:1-7.

    'Sequential learning employing unfamiliar teacher hypothesis (SLEUTH) with concurrent estimation of both parameters and teacher characteristics ' () International J. Computer Information Sciences .

    • Search Google Scholar
  • Esposito, F., D. Malerbo and G. Semeraro. 1995. Simplifying decision trees by pruning and grafting: new results. In: N. Larra and S. Wrobel (eds.), Proc. 8th European Conf. Machine Learning, Lecture Notes in Artificial Intelligence 912 Springer, Berlin, pp. 287-290.

    Simplifying decision trees by pruning and grafting: new results. , () 287 -290.

  • Fisher, D. 1992. Pessimistic and optimistic induction. Technical Report CS-92-12 Dept. Comput. Sci., Vanderbilt Univ.

  • Breiman, L., J. H. Friedman, R. A. Orshen and C. J. Stone. 1984. Classification and Regression Trees. Belmont CA. Wadsworth.

    Classification and Regression Trees. , ().

  • Brézillon P. and J-Ch. Pomerol. 1999. Contextual knowledge sharing and cooperation in intelligent assistant systems. le Travail Hu-main 62:223-246 PUF, Paris.

    'Contextual knowledge sharing and cooperation in intelligent assistant systems ' () 62 le Travail Hu-main : 223 -246.

    • Search Google Scholar
  • Brown, D. E. and C. L. Pittard. 1993. Classification trees with optimal multivariate splits. Proc. International Conf. on Systems, Man and Cybernetics: Systems Engineering in the Service of Humans. I. E. E. E. New York, Vol 3. pp. 475-477.

    Classification trees with optimal multivariate splits. , () 475 -477.

  • Carley, K. and M. Palmquist. 1992. Extracting, representing and analyzing mental models. Social Forces 70:601-636.

    'Extracting, representing and analyzing mental models ' () 70 Social Forces : 601 -636.

  • Chipman, H., E. I. George and R. E. McCullough. 2000. Hierarchical priors for Bayesian CART shrinkage. Statistics and Computing 10:17-24.

    'Hierarchical priors for Bayesian CART shrinkage ' () 10 Statistics and Computing : 17 -24.

    • Search Google Scholar
  • Chipman, H., E. I. George and R. E. McCullough. 2001. The practical implementation of Bayesian model selection. IMS Lecture Notes: Monograph Ser. 38:67-136.

    'The practical implementation of Bayesian model selection ' () 38 IMS Lecture Notes: Monograph Ser : 67 -136.

    • Search Google Scholar
  • Czárán, T., R. F. Hoekstra. and L. Pagie. 2002. Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. 99:786-790.

    'Chemical warfare between microbes promotes biodiversity ' () 99 Proc. Natl. Acad. Sci : 786 -790.

    • Search Google Scholar
  • Dale, M. B. 1982. Strategy and tactics in pattern analysis: a response to Harrington, Dawes and Ludwig. Austral. J. Ecology 7:411-414.

    'Strategy and tactics in pattern analysis: a response to Harrington, Dawes and Ludwig ' () Austral. J. Ecology : 411 -414.

    • Search Google Scholar
  • Dale, M. B., P. E. R. Dale and T. Edgoose. 2002a. Using Markov models to incorporate serial dependence in studies of vegetation change. Acta Oecologica 23:261-269.

    'Using Markov models to incorporate serial dependence in studies of vegetation change ' () 23 Acta Oecologica : 261 -269.

    • Search Google Scholar
  • Dale, M. B., P. E. R. Dale, C. Li and G. Biswas. 2002b. Assessing impacts of small perturbations using a model-based approach. Ecological Modelling 156:185-199.

    'Assessing impacts of small perturbations using a model-based approach ' () 156 Ecological Modelling : 185 -199.

    • Search Google Scholar
  • Daley, R., 1977. On the inference of optimal descriptions. Theor. Comput. Sci. 4:301-319.

    'On the inference of optimal descriptions ' () Theor. Comput. Sci : 301 -319.

  • De'ath, Glenn, 1999: Principal Curves: A new technique for indirect and direct gradient analysis. Ecology 80:2237-2253.

    'Principal Curves: A new technique for indirect and direct gradient analysis ' () 80 Ecology : 2237 -2253.

    • Search Google Scholar
  • Friedman, J. H., R. Kohavi and Y. Yun. 1996. Lazy decision trees, in: Proceedings of the 13th National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference, AAAI 96, IAAI 96 AAAI Press / The MIT Press, pp. 717-724.

    Lazy decision trees 96 717 724

  • Fürnkranz, J. 1996. Separate and conquer rule learning. Technical Report TR-96-25. Austrian Research Inst. Artificial Intell., Vienna.

  • Hájek, P., I. Havel and M. Chytil. 1966. The GUHA method of automatic hypotheses determination. Computing 1:293-308.

    'The GUHA method of automatic hypotheses determination ' () Computing : 293 -308.

  • Hájek, P. and T. Havranek. 1977. On generation of inductive hypotheses. Internatl. J. Man-Mach. Stud. 9:415-438.

    'On generation of inductive hypotheses ' () Internatl. J. Man-Mach. Stud : 415 -438.

  • Jelinski, D. E. and J-G. Wu. 1996. The modifiable areal unit problem and implications for landscape ecology. Landscape Ecology 11:129-140.

    'The modifiable areal unit problem and implications for landscape ecology ' () 11 Landscape Ecology : 129 -140.

    • Search Google Scholar
  • Hancock, T, T. Jiang., M. Li and J. Tromp. 1996. Lower bounds on learning decision lists and trees. Information and Computation 126:114-122.

    'Lower bounds on learning decision lists and trees ' () 126 Information and Computation : 114 -122.

    • Search Google Scholar
  • Heckman, J. 1979. Sample selection bias as a specification error. Econometrika 47:153-161.

    'Sample selection bias as a specification error ' () 47 Econometrika : 153 -161.

  • Heitjan, D. F. 1993. Ignorability and coarse data: some biomedical examples. Biometrics 49: 1099-1109.

    'Ignorability and coarse data: some biomedical examples ' () 49 Biometrics : 1099 -1109.

  • Ho, T. K. 1998. The random subspace method for constructing decision forests. I. E. E. E. Trans. Pattern Analysis Machine Intelligence PAMI-20:832-844.

    The random subspace method for constructing decision forests. , () 832 -844.

  • Hogeweg, P. 2002. Computing an organism: on the interface between informatic and dynamic processes. Biosystems 64:97-109.

    'Computing an organism: on the interface between informatic and dynamic processes ' () 64 Biosystems : 97 -109.

    • Search Google Scholar
  • Jordan, M., Z. Ghahramani and L. K. Saul. 1997. Hidden Markov decision trees. In: M. C. Mozer, M. I. Jordan and T. Petsche (eds.), Advances in Neural Information Processing Systems 9. MIT Press Cambridge MA.

    Hidden Markov decision trees. , ().

  • Lanterman, A. D. 2000. Schwarz, Wallace and Rissanen: Intertwining themes in theories of model order estimation. International Statistical Review 69:185-212.

    'Schwarz, Wallace and Rissanen: Intertwining themes in theories of model order estimation ' () 69 International Statistical Review : 185 -212.

    • Search Google Scholar
  • Li, C. G. Biswas, M. B. Dale and P. E. R. Dale. 2001. Building models of ecological dynamics using HMM based temporal data clustering. In: Advances in Intelligent Data Analysis, the 4th International Conference on Intelligent Data Analysis, Lecture Notes in Computer Science, 2189, Springer-Verlag, Berlin, pp. 53-62.

    'Building models of ecological dynamics using HMM based temporal data clustering ' , , .

    • Search Google Scholar
  • Mac Nally, R. 2000. Regression and model-building in conservation biology, biogeography and ecology: The distinction between -and reconciliation of - 'predictive' and 'explanatory' models. Biodiversity and Conservation 9:655-671.

    'Regression and model-building in conservation biology, biogeography and ecology: The distinction between -and reconciliation of - 'predictive' and 'explanatory' models ' () Biodiversity and Conservation : 655 -671.

    • Search Google Scholar
  • Macnaughton-Smith, P. 1963. The classification of individuals by the possession of attributes associated with a criterion. Biometrics 19:364-366.

    'The classification of individuals by the possession of attributes associated with a criterion ' () 19 Biometrics : 364 -366.

    • Search Google Scholar
  • Macnaughton-Smith, P. 1965. Some statistical and other numerical methods for classifying individuals. Home Office Research Unit Report 6, Home Office, London.

  • Mehta, M., J. Rissanen and R. Agrawal. 1995. MDL-Based Decision Tree Pruning. Proc. 1st International Conf. Knowledge Discovery and Data Mining (KDD'95), pp. 216-221.

    'MDL-Based Decision Tree Pruning ' , , .

  • Mingers, J. 1989. An empirical comparison of selection measures for decision tree induction. Machine Learning 3 319-342.

    'An empirical comparison of selection measures for decision tree induction ' () Machine Learning : 319 -342.

    • Search Google Scholar
  • Mikkelson, G. M. 2001. Complexity and verisimilitude: realism in ecology. Biology and Philosophy 16:533-546.

    'Complexity and verisimilitude: realism in ecology ' () 16 Biology and Philosophy : 533 -546.

    • Search Google Scholar
  • Murphy, P. M. and M. J. Pazzani. 1991. ID2-of-3: Constructive induction of M-of-N concepts for discriminators in decision trees.

  • Oates, T. and D. Jensen. 1999. Toward a Theoretical Understanding of Why and When Decision Tree Pruning Algorithms Fail. Proc. 16th National Conf. Artificial Intelligence and 11th Conf. Innovative Applications of Artificial Intelligence, AAAI Press / The MIT Press, pp. 372-378.

    'Toward a Theoretical Understanding of Why and When Decision Tree Pruning Algorithms Fail ' , , .

    • Search Google Scholar
  • Oliver, J. and Baxter, R. 1994. MML and Bayesianism: similarities and differences. Technical Report 206, Department of Computer Science, Monash University.

  • Oliver, J. and Hand, D. 1996. Averaging over decision trees. J. Classif. 13:281-297.

    'Averaging over decision trees ' () 13 J. Classif : 281 -297.

  • O'Neill, R. V., D. L. DeAngelis, J. B. Waide and T. F. H. Allen. 1986. A Hierarchical Concept of Ecosystems, Princeton Univ. Press, Princeton, N. J.

    A Hierarchical Concept of Ecosystems , ().

  • Opitz, D. and R. Machin. 1999. Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11:160-198.

    'Popular ensemble methods: an empirical study ' () 11 J. Artif. Intell. Res. : 160 -198.

  • Rastetter, E. B., A. W. King, B. J. Cosby, G. M. Hornberger, R. V. O'Neill and J. E. Hobbie. 1992. Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems. Ecological Applications 2:55-70.

    'Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems ' () Ecological Applications : 55 -70.

    • Search Google Scholar
  • Riddle, B. R. and D. J. Hafner. 1999. Species as units of analysis in ecology and biogeography: time to take the blinkers off. Global Ecol. Biogeog. 8:433-441.

    'Species as units of analysis in ecology and biogeography: time to take the blinkers off ' () Global Ecol. Biogeog : 433 -441.

    • Search Google Scholar
  • Webb, G. I. 1994. Generality is more significant than complexity: toward alternatives to Occam's razor. In: C. Zhang, J. Deben-ham and D. Lukose (eds), AI'94 - Proc. 7th Australian Joint Conf. Artificial Intelligence, Armidale, World Scientific, pp. 60-67.

    'Generality is more significant than complexity: toward alternatives to Occam's razor ' , , .

    • Search Google Scholar
  • Widmer, G. and M. Kubat. 1996. Learning in the presence of concept drift and hidden contexts. Machine Learning 23:69-101.

    'Learning in the presence of concept drift and hidden contexts ' () 23 Machine Learning : 69 -101.

    • Search Google Scholar
  • Williams, G. J. 1988 Combining decision trees. In: J. S. Gero and R. Stanton (eds.), Artifiical Intelligence: Developments and Applications. Elsevier Scientific, Amsterdam, pp. 273-289.

    Artifiical Intelligence: Developments and Applications , () 273 -289.

  • Wittgenstein, L. 1995. Tractacus 5: 3651

  • Yamada, H. and S. Amaroso. 1971. Structural and behavioural equivalences of tessellation automata. Information and Control 18:1-31.

    'Structural and behavioural equivalences of tessellation automata ' () 18 Information and Control .

    • Search Google Scholar
  • Young, P., S. Parkinson and M. Lees. 1996. Simplicity out of complexity in environmental modeling: Occam's razor revisited. J. Appl. Statist. 234:165-210.

    'Simplicity out of complexity in environmental modeling: Occam's razor revisited ' () 234 J. Appl. Statist : 165 -210.

    • Search Google Scholar
  • Zhang, J., Y-S. Yim and J. Yang. 1997. Intelligent selection of instances for prediction function in lazy learning algorithms. Artif. Intel. Rev. 11:175-192.

    'Intelligent selection of instances for prediction function in lazy learning algorithms ' () 11 Artif. Intel. Rev : 175 -192.

    • Search Google Scholar
  • Adomavicius, G. and A. Tuzhilin. 1997. Discovery of actionable patterns in databases: the action hierarchy approach. In: D. Heckerman, H. Mannila, D. Pregibon and R. Uthurusamy (eds.), Proc. 3rd International Conference on Knowledge Discovery and Data Mining. AAAI. pp. 111-114.

    Discovery of actionable patterns in databases: the action hierarchy approach AAAI 111 114

    • Search Google Scholar
  • Fitzgibbon, L. J., D. L. Dowe and L. Allison. 2002. Univariate polynomial inference by Monte Carlo Message Length approximation. In: C. Sammut and A. Hoffman (eds.), Proc. 19th Internatl. Conf. Machine Learning (ICML-2002), Morgan-Kauffman, San Francisco, pp. 147-154.

    Univariate polynomial inference by Monte Carlo Message Length approximation. , () 147 -154.

    • Search Google Scholar
  • Forster, M. R. 2000. Key concepts in model selection: performance and generalizability. J. Math. Psychol: 44:205-231.

    'Key concepts in model selection: performance and generalizability ' () 44 J. Math. Psychol : 205 -231.

    • Search Google Scholar
  • Freund, Y. and L. Mason. 1999. The alternating decision tree learning algorithm. In: Proc 16th Int. Conf. Machine Learning, Morgan-Kaufman, San Francisco, pp. 124-133.

    'The alternating decision tree learning algorithm ' , , .

  • Robnik-Sikonja, M. and I. Kononenko. 1998. Pruning Regression Trees with MDL. In: Henri Prade (Ed.): Proc. 13th European Conf. Artificial Intelligence, Brighton, UK, August 23-28 1998. John Wiley and Sons, Chichester. pp. 455-459.

    'Pruning Regression Trees with MDL ' , , .

  • Rymon, R. 1993. An SE-tree based characterization of the induction problem. Proceedings of the 10th International Conference on Machine Learning, ML-93, Morgan Kaufmann, CA, pp. 268-275.

    'An SE-tree based characterization of the induction problem ' , , .

  • Schwarz, G. 1978. Estimating dimension of a model. Ann. Statist. 6: 461-464.

    'Estimating dimension of a model ' () Ann. Statist. : 461 -464.

  • Srikant, R. and R. Agrawal. 1995. Mining generalized association rules. Res. Rep. RJ9963, IBM Almaden Res. Cent. San José, CA. and Proc. 21st Very Large Data Base Conference, Zurich, 13 pp.

    'Mining generalized association rules. Res. Rep. RJ9963, IBM Almaden Res. Cent. San José, CA. and Proc ' , , .

    • Search Google Scholar
  • Stone M. 1977. An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaike's Criterion. J. R. Stat. Soc., B 38:44-47.

    'An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaike's Criterion ' () B 38 J. R. Stat. Soc. : 44 -47.

    • Search Google Scholar
  • Tan, P. J. and D. L. Dowe. 2002. MML inference of decision graphs with multi-way joins. Lecture Notes in Artificial Intelligence 2557, pp. 131-142.

  • Tan, P. J. and D. L. Dowe. 2003. MML inference of decision graphs with multi-way joins and dynamic attributes. Proc. 16th Australian Joint Conference on Artificial Intelligence, Perth, Dec. (to appear).

    'MML inference of decision graphs with multi-way joins and dynamic attributes' , , .

    • Search Google Scholar
  • Ting, K. M. 1994. The problem of small disjuncts: its remedy in decision trees. Proc 10th Canadian Conf. Artif. Intell. pp. 91-97.

    'The problem of small disjuncts: its remedy in decision trees ' , , .

  • Todorovski, L. and S. Dzeroski. 2000. Combining multiple models with meta decision trees. Principles of Data Mining and Knowledge Discovery, pp. 54-64.

  • Tothill, J. C, J. N. G. Hargreaves and R. M. Jones. 1978. - BO-TANAL - a comprehensive sampling and computing procedure for estimating pasture yield and composition. I. Field sampling. Technical Memorandum 8, CSIRO, Division Tropical Crops Pastures, Brisbane.

    BO-TANAL - a comprehensive sampling and computing procedure for estimating pasture yield and composition. I. Field sampling. Technical Memorandum 8, CSIRO , ().

    • Search Google Scholar
  • Utgoff, P. E. 1994. An improved algorithm for incremental induction of decision trees. In: W. Cohen and H. Hirsh (eds.), Proceedings of the 11th International Conference on Machine Learning, New Brunswick, NJ. Morgan Kaufmann. pp. 318-325.

    'An improved algorithm for incremental induction of decision trees ' , , .

  • van den Bosch, A., A. Weijters, H. J. Van der Herik. and W. Daelemans. 1997. When small disjuncts abound, try lazy learning: a case study. Proc. 7th Belgian-Dutch Conf. Machine Learning, pp. 109-118.

    'When small disjuncts abound, try lazy learning: a case study. Proc ' , , .

  • van de Velde, W. 1990. Incremental induction of topologically minimal decision trees. In: Proceedings of the 7th International Conference on Machine Learning, Austin, TX. Morgan Kaufmann. pp. 66-74.

    'Incremental induction of topologically minimal decision trees ' , , .

  • Vapnik V.N. 1995. The Nature of Statistical Learning Theory. Springer, Berlin.

    The Nature of Statistical Learning Theory , ().

  • Wallace, C. S. 1996. MML inference of predictive trees, graphs and nets. In: A. Gammerman (ed.), Computational Learning and Probabilistic Reasoning, John Wiley, pp. 43-66.

    MML inference of predictive trees, graphs and nets. , () 43 -66.

  • Wallace, C. S. and D. L. Dowe. 1999. Minimum Message Length and Kolmogorov complexity. Comput. J. 42:270-283.

    'Minimum Message Length and Kolmogorov complexity ' () 42 Comput. J. : 270 -283.

  • Wallace, C. S. and J. Patrick. 1993. Coding decision trees. Machine Learning 11:7-22.

    'Coding decision trees ' () 11 Machine Learning .

Click HERE for submission guidelines.


Manuscript submission: COMEC Manuscript Submission

 

Senior editors

Editor(s)-in-Chief: Podani, János

Editor(s)-in-Chief: Jordán, Ferenc

Honorary Editor(s): Orlóci, László

Editorial Board

  • Madhur Anand, CAN (forest ecology, computational ecology, and ecological complexity)
  • S. Bagella, ITA (temporal dynamics, including succession, community level patterns of species richness and diversity, experimental studies of plant, animal and microbial communities, plant communities of the Mediterranean)
  • P. Batáry, HUN (landscape ecology, agroecology, ecosystem services)
  • P. A. V. Borges, PRT (community level patterns of species richness and diversity, sampling in theory and practice)
  • A. Davis, GER (supervised learning, multitrophic interactions, food webs, multivariate analysis, ecological statistics, experimental design, fractals, parasitoids, species diversity, community assembly, ticks, biodiversity, climate change, biological networks, cranes, olfactometry, evolution)
  • Z. Elek, HUN (insect ecology, invertebrate conservation, population dynamics, especially of long-term field studies, insect sampling)
  • T. Kalapos, HUN (community level plant ecophysiology, grassland ecology, vegetation-soil relationship)
  • G. M. Kovács, HUN (microbial ecology, plant-fungus interactions, mycorrhizas)
  • W. C. Liu,TWN (community-based ecological theory and modelling issues, temporal dynamics, including succession, trophic interactions, competition, species response to the environment)
  • L. Mucina, AUS (vegetation survey, syntaxonomy, evolutionary community ecology, assembly rules, global vegetation patterns, mediterranean ecology)
  • P. Ódor, HUN (plant communities, bryophyte ecology, numerical methods)
  • F. Rigal, FRA (island biogeography, macroecology, functional diversity, arthropod ecology)
  • D. Rocchini, ITA (biodiversity, multiple scales, spatial scales, species distribution, spatial ecology, remote sensing, ecological informatics, computational ecology)
  • F. Samu, HUN (landscape ecology, biological control, generalist predators, spiders, arthropods, conservation biology, sampling methods)
  • U. Scharler, ZAF (ecological networks, food webs, estuaries, marine, mangroves, stoichiometry, temperate, subtropical)
  • D. Schmera, HUN (aquatic communities, functional diversity, ecological theory)
  • M. Scotti, GER (community-based ecological theory and modelling issues, trophic interactions, competition, species response to the environment, ecological networks)
  • B. Tóthmérész, HUN (biodiversity, soil zoology, spatial models, macroecology, ecological modeling)
  • S. Wollrab, GER (aquatic ecology, food web dynamics, plankton ecology, predator-prey interactions)

 

Advisory Board

  • S. Bartha, HUN
  • S.L. Collins, USA
  • T. Czárán, HUN
  • E. Feoli, ITA
  • N. Kenkel, CAN
  • J. Lepš, CZE
  • S. Mazzoleni, ITA
  • Cs. Moskát, HUN
  • B. Oborny, HUN
  • M.W. Palmer, USA
  • G.P. Patil, USA
  • V. de Patta Pillar, BRA
  • C. Ricotta, ITA
  • Á. Szentesi, HUN

PODANI, JÁNOS
E-mail: podani@ludens.elte.hu


JORDÁN, FERENC
E-mail: jordan.ferenc@gmail.com

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Biology & Environmental Sciences
  • Elsevier/Geo Abstracts
  • Science Citation Index Expanded
  • SCOPUS
  • Zoological Abstracts

 

 

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)