Authors:
J. Podani Department of Plant Taxonomy and Ecology, Eötvös University. Pázmány P. s. 1/c, H-1117 Budapest, Hungary

Search for other papers by J. Podani in
Current site
Google Scholar
PubMed
Close
and
P. Csontos Research Group of Theoretical Biology and Ecology, MTA-ELTE. Pázmány P. s. 1/c, H-1117 Budapest, Hungary

Search for other papers by P. Csontos in
Current site
Google Scholar
PubMed
Close
Restricted access

The paper evaluates spatial autocorrelation structure in grassland vegetation at the community level. We address the following main issues: 1) How quadrat size affects the measurement of spatial autocorrelation for presence/ absence and cover data? 2) What is the relationship between spatial autocorrelation and classification? 3) Is there a temporal change of spatial autocorrelation in the vegetation studied? We found that multivariate variogram shape, variance explained and the sill are different for presence/absence data and cover data, whereas quadrat size increases apparently introduce a stabilizing effect for both. Spatial stationarity is detected for species presence, and non-stationarity for cover. A new graphical tool, the clusterogram is introduced to examine spatial dependence of classification at various numbers of clusters. We found that spatial autocorrelation plays a crucial role in the classification of vegetation and therefore we suggest that its effect should not be removed from clustering. Mutual interpretation of variogram and clusterogram shape may be informative on the number of meaningful clusters present in the data. Spatial autocorrelation structure did not change markedly after 23 years for presence/absence data, indicating that the vegetation of the study area is stationary in time as well. The present study demonstrates that traditional quadrat data are suitable for evaluating spatial autocorrelation, even though field coordinates are recorded several years after sampling is completed.

  • Anand, M. and Kadmon, R. 2000. Community-level analyses of spatiotemporal plant dynamics. Écoscience 7: 101-110.

    'Community-level analyses of spatiotemporal plant dynamics ' () 7 Écoscience : 101 -110 .

    • Search Google Scholar
  • Bellehumeur, C., Legendre, P. and Marcotte, D. 1997. Variance and spatial scales in a tropical rain forest: Changing the size of sampling units. Plant Ecol. 130: 89-98.

    'Variance and spatial scales in a tropical rain forest: Changing the size of sampling units ' () 130 Plant Ecol. : 89 -98 .

    • Search Google Scholar
  • Bourgault, G., Marcotte, D. and Legendre, P. 1992. The multivariate (co)variogram as a spatial weighting function in classification methods. Math. Geol. 24: 463-478.

    'The multivariate (co)variogram as a spatial weighting function in classification methods ' () 24 Math. Geol. : 463 -478 .

    • Search Google Scholar
  • Dale, M. R. T. and Fortin, M.-J. 2002. Spatial autocorrelation and statistical test in ecology. Écoscience 9:162-167.

    'Spatial autocorrelation and statistical test in ecology ' () 9 Écoscience : 162 -167 .

    • Search Google Scholar
  • Fortin, M.-J. 1999. Effects of sampling unit resolution on the estimation of the spatial autocorrelation. Écoscience 6: 636-641.

    'Effects of sampling unit resolution on the estimation of the spatial autocorrelation ' () 6 Écoscience : 636 -641 .

    • Search Google Scholar
  • Fortin, M.-J. and Jacquez, G. M. 2000. Randomization tests and spatially autocorrelated data. Bulletin of the ESA 81: 201-206.

    'Randomization tests and spatially autocorrelated data ' () 81 Bulletin of the ESA : 201 -206 .

    • Search Google Scholar
  • Gordon, A. D. 1999. Classification. 2nd ed. Chapman and Hall, London.

    Classification , ().

  • Jelinski, D. E. and Wu, J. 1996. The modifiable areal unit problem and implications for landscape ecology. Landscape Ecol. 11: 129-140.

    'The modifiable areal unit problem and implications for landscape ecology ' () 11 Landscape Ecol. : 129 -140 .

    • Search Google Scholar
  • Kenkel, N. C., Juhász-Nagy, P. and Podani, J. 1989. On sampling procedures in population and community ecology. Vegetatio 83: 195-207.

    'On sampling procedures in population and community ecology ' () 83 Vegetatio : 195 -207 .

    • Search Google Scholar
  • Koenig, W. D. 1999. Spatial autocorrelation of ecological phenomena. Trends Ecol. Evol. 14: 22-26.

    'Spatial autocorrelation of ecological phenomena ' () 14 Trends Ecol. Evol. : 22 -26 .

    • Search Google Scholar
  • Legendre, P. 1987. Constrained clustering. In: Legendre, P. and Legendre, L. (eds), Developments in Numerical Ecology. Springer, Berlin, pp. 289-307.

    Constrained clustering , () 289 -307 .

  • Legendre, P. 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology 74: 1659-1673.

    'Spatial autocorrelation: Trouble or new paradigm? ' () 74 Ecology : 1659 -1673 .

  • Legendre, P., Dale, M. R. T., Fortin, M.-J., Gurevitch, J., Hohn, M. and Myers, D. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25: 601-616.

    'The consequences of spatial structure for the design and analysis of ecological field surveys ' () 25 Ecography : 601 -616 .

    • Search Google Scholar
  • Legendre, P. and Fortin, M.-J. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107-138.

    'Spatial pattern and ecological analysis ' () 80 Vegetatio : 107 -138 .

  • Legendre, P. and Legendre, L. 1998. Numerical Ecology. 2nd ed. Elsevier, Amsterdam.

    Numerical Ecology , ().

  • Maestre, F. T., Rodríguez, F., Bautista, S., Cortina, J. and Bellot, J. 2005. Spatial associations and patterns of perennial vegetation in a semi-arid steppe: a multivariate geostatistics approach. Plant Ecol. 179: 133-147.

    'Spatial associations and patterns of perennial vegetation in a semi-arid steppe: a multivariate geostatistics approach ' () 179 Plant Ecol. : 133 -147 .

    • Search Google Scholar
  • Mistral, M., Buck, O., Meier-Behrmann, D. C., Burnett, D. A., Barn-field, T. E., Scott, A. J., Anderson, B. J. and Wilson, J. B. 2000. Direct measurement of spatial autocorrelation at the community level in four plant communities. J. Veg. Sci. 11: 911-916.

    'Direct measurement of spatial autocorrelation at the community level in four plant communities ' () 11 J. Veg. Sci. : 911 -916 .

    • Search Google Scholar
  • Nekola, J. C. and White, P. S. 1999. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26: 867-878.

    'The distance decay of similarity in biogeography and ecology ' () 26 J. Biogeogr. : 867 -878 .

    • Search Google Scholar
  • Noy-Meir, I. 1977. Multivariate analysis of the semiarid vegetation in south-eastern Australia. II. Vegetation catenae and environmental gradients. Australian J. Bot. 22: 115-140.

    'Multivariate analysis of the semiarid vegetation in south-eastern Australia. II. Vegetation catenae and environmental gradients ' () 22 Australian J. Bot. : 115 -140 .

    • Search Google Scholar
  • Oden, N. L. and Sokal, R. R. 1986. Directional autocorrelation: an extension of spatial correlograms to two dimensions. Syst. Zool. 35: 608-617.

    'Directional autocorrelation: an extension of spatial correlograms to two dimensions ' () 35 Syst. Zool. : 608 -617 .

    • Search Google Scholar
  • Persson, S. 1980. Succession in a south Swedish deciduous wood: a numerical approach. Vegetatio 43: 103-122.

    'Succession in a south Swedish deciduous wood: a numerical approach ' () 43 Vegetatio : 103 -122 .

    • Search Google Scholar
  • Perry, J.N., Liebhold, A. M., Rosenberg, M. S., Dungan, J., Miriti, M., Jakomulska, A. and Citron-Pousty, S. 2002. Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography 25: 578-600.

    'Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data ' () 25 Ecography : 578 -600 .

    • Search Google Scholar
  • Podani, J. 1984. Spatial processes in the analysis of vegetation: theory and review. Acta Bot. Hung. 30: 75-118.

    'Spatial processes in the analysis of vegetation: theory and review ' () 30 Acta Bot. Hung. : 75 -118 .

    • Search Google Scholar
  • Podani, J. 1989. Comparison of classifications and ordinations of vegetation data. Vegetatio 83: 111-128.

    'Comparison of classifications and ordinations of vegetation data ' () 83 Vegetatio : 111 -128 .

    • Search Google Scholar
  • Podani, J. 1998. A complex numerical analysis of dolomite rock grasslands of the Sas-hegy Nature Reserve, Budapest, Hungary. In: Csontos, P. (ed.), Botanical Exploration of Rock Grasslands. A Festschrift to B. Zólyomi. Scientia, Budapest, pp. 213-229 (in Hungarian, with English abstract).

    A complex numerical analysis of dolomite rock grasslands of the Sas-hegy Nature Reserve, Budapest, Hungary , () 213 -229 .

    • Search Google Scholar
  • Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden.

    Introduction to the Exploration of Multivariate Biological Data , ().

  • Podani, J. 2001. SYN-TAX 2000. User's Guide. Scientia, Budapest.

    SYN-TAX 2000. User's Guide , ().

  • Podani, J., Csontos, P., Tamás, J. and Miklós, I. 2005. A new multivariate approach to studying temporal changes of vegetation. Plant Ecol. 181: 85-100.

    'A new multivariate approach to studying temporal changes of vegetation ' () 181 Plant Ecol. : 85 -100 .

    • Search Google Scholar
  • Royle, A., Clark, I., Brooker, P. I., Parker, H., Journel, A., Rendu, J. M., Sandefur, R. I. and Moussset-Jones, P. 1980. Geostatistics. McGraw-Hill, New York, N. Y.

    Geostatistics , ().

  • Shing, Lin. 2003. Optimization of cluster analysis using autocorrelation. Department of Geography, Southwest Texas State University. Presented at UCGIS Summer Assembly, Pacific Grove, CA, 2003. Manuscript available from www.ucgis.org/summer03/studentpapers/shinglin.pdf

  • Solie, J. B., Raun, W. R., Whitney, R. W., Stone, M. L. and Ringer, J. D. 1996. Optical sensor based field element size and sensing strategy for nitrogen application. Transactions of the American Society of Agricultural Engineers 39: 1983-1992.

    'Optical sensor based field element size and sensing strategy for nitrogen application ' () 39 Transactions of the American Society of Agricultural Engineers : 1983 -1992 .

    • Search Google Scholar
  • Wagner, H. H. 2003. Spatial covariance in plant communities: Integrating ordination, geostatistics, and variance testing. Ecology 84: 1045-1057.

    'Spatial covariance in plant communities: Integrating ordination, geostatistics, and variance testing ' () 84 Ecology : 1045 -1057 .

    • Search Google Scholar
  • Wiens, J. A. 1989. Spatial scaling in ecology. Funct. Ecol. 3: 385-397.

    'Spatial scaling in ecology ' () 3 Funct. Ecol. : 385 -397 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Community Ecology
Language English
Size A4
Year of
Foundation
2000
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-8553 (Print)
ISSN 1588-2756 (Online)