View More View Less
  • 1 Università di Roma La Sapienza Dipartimento di Matematica Guido Castelnuovo Piazzale Aldo Moro, 2 I-00185 Roma Italy
  • 2 Université des Sciences et Technologies de Lille UFR de Mathématiques Pures et Appliquées F-59655 Villeneuve d’Ascq France
  • 3 Universidade Federal de Rio Grande do Sul Departamento de Ecologia 91540-000 Porto Alegre RS Brazil
Restricted access

In the analysis of multidimensional ecological data, it is often relevant to identify groups of variables since these groups may reflect similar ecological processes. The usual approach, the application of well-known clustering procedures using an appropriate similarity measure among the variables, may be criticized, but specific methods for clustering variables are neither investigated in detail nor used broadly. Here we introduce a new clustering method, the Hierarchical Factor Classification of variables, which is based on the evaluation of the least differences among representative variables of groups, as revealed by a two-dimensional Principal Components Analysis. As an additional feature, the method gives at each step a principal plane where both the grouped variables and the units, considered only according to these variables, can be projected. This method can be adapted to count data, so that it may be used for classifying both rows and columns of a contingency data table, by using the chi-square metric. In an example, we apply both methods to vegetation and soil data from the Campos in Southern Brazil.

  • Anderberg, M.R. 1973. Cluster Analysis for Applications . Academic Press, New York.

    Anderberg M.R. , '', in Cluster Analysis for Applications , (1973 ) -.

  • Austin, M.P. and L. Belbin. 1982. A new approach to the species classification problem in floristic analysis. Aust. J. Ecol. 7: 75–89.

    Belbin L. , 'A new approach to the species classification problem in floristic analysis ' (1982 ) 7 Aust. J. Ecol. : 75 -89.

    • Search Google Scholar
  • Baccini, A. 1984. Étude comparative des representations graphiques en analyses factorielles des correspondances simples et multiples. Université Paul Sabatier, Toulouse, Publications du Laboratoire de Statistique et Probabilité n. 02/84.

  • Benzécri, J.P. et al. 1973–82. L’analyse des données. Volume 2: L’analyse des correspondances . Dunod, Paris.

    Benzécri J.P. , '', in L’analyse des données. Volume 2: L’analyse des correspondances , (1973 ) -.

  • Boldrini, I.I. 1997. Campos no Rio Grande do Sul. Fisionomia e problemática ocupacional. Boletim do Instituto de Biociencias, Universidad Federal do Rio Grande do Sul 56: 1–39.

    Boldrini I.I. , 'Campos no Rio Grande do Sul. Fisionomia e problemática ocupacional ' (1997 ) 56 Boletim do Instituto de Biociencias, Universidad Federal do Rio Grande do Sul : 1 -39.

    • Search Google Scholar
  • Camiz, S. 1994. A procedure for structuring vegetation tables. Abstracta Botanica 18: 57–70.

    Camiz S. , 'A procedure for structuring vegetation tables ' (1994 ) 18 Abstracta Botanica : 57 -70.

    • Search Google Scholar
  • Camiz, S. 2005. The Guttman effect: its interpretation and a new redressing method. Tetradia Analyses Dedomenon (Data Analysis Bulletin) 5: 7–34.

    Camiz S. , 'The Guttman effect: its interpretation and a new redressing method ' (2005 ) 5 Tetradia Analyses Dedomenon (Data Analysis Bulletin) : 7 -34.

    • Search Google Scholar
  • Camiz, S., and J.J. Denimal. 2001. Statistical evaluation of cross-classifications derived from rearranged community data matrices. Community Ecol. 1: 81–92.

    Denimal J.J. , 'Statistical evaluation of cross-classifications derived from rearranged community data matrices ' (2001 ) 1 Community Ecol. : 81 -92.

    • Search Google Scholar
  • Camiz, S. and J.J. Denimal. 2003. Nouvelle technique de segmentation associée a une classification de variables., XXXVèmes Journées de Statistique, Lyon, Société Française de Statistique, Université Lumiere Lyon 2, Tome 1: 293–296.

    Denimal J.J. , 'Nouvelle technique de segmentation associée a une classification de variables ' (2003 ) 1 XXXVèmes Journées de Statistique, Lyon, Société Française de Statistique, Université Lumiere Lyon 2 : 293 -296.

    • Search Google Scholar
  • Denimal, J.J. 2000. Correspondances hiérarchiques: une nouvelle approches. XXXII Journées de la Société Française de Statistique, Fes, Maroc.

  • Denimal, J.J. 2001. Hierarchical Factorial Analysis. Proceedings of the 10th International Symposium in Applied Stochastic Models and Data Analysis. Compiègne, June 12–15, 2001.

  • Denimal, J.J. and S. Camiz. 2001. Exact conditional tests for a reciprocal interpretation of hierarchical classifications built on a two way contingecy table. Metron 59: 157–178.

    Camiz S. , 'Exact conditional tests for a reciprocal interpretation of hierarchical classifications built on a two way contingecy table ' (2001 ) 59 Metron : 157 -178.

    • Search Google Scholar
  • EMBRAPA, 1999. Classificação dos Solos Brasileiros . EMBRAPA, Brasília.

    '', in Classificação dos Solos Brasileiros , (1999 ) -.

  • Forgy, E.W. 1965. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21:768–769.

    Forgy E.W. , 'Cluster analysis of multivariate data: efficiency versus interpretability of classifications ' (1965 ) 21 Biometrics : 768 -769.

    • Search Google Scholar
  • Godement, R. 1966. Cours d’Algèbre . Hermann, Paris.

    Godement R. , '', in Cours d’Algèbre , (1966 ) -.

  • Gordon, A.D. 1999. Classification . Chapman and Hall, London.

    Gordon A.D. , '', in Classification , (1999 ) -.

  • Greenacre, M.J. 1984. Theory and Applications of Correspondence Analysis . Academic Press, London.

    Greenacre M.J. , '', in Theory and Applications of Correspondence Analysis , (1984 ) -.

  • Harman, H.H. 1976. Modern Factor Analysis . University of Chicago Press, Chicago.

    Harman H.H. , '', in Modern Factor Analysis , (1976 ) -.

  • Hill, M.O. 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61:237–249.

    Hill M.O. , 'Reciprocal averaging: an eigenvector method of ordination ' (1973 ) 61 J. Ecol. : 237 -249.

    • Search Google Scholar
  • Höppner, F., F. Klawonn, R. Kruse, and T. Runkler 1999. Fuzzy Cluster Analysis . Wiley, Chichester.

    Runkler T. , '', in Fuzzy Cluster Analysis , (1999 ) -.

  • Jackson, J.E. 1991. A Users Guide to Principal Components Analysis . Wiley, New York.

    Jackson J.E. , '', in A Users Guide to Principal Components Analysis , (1991 ) -.

  • Köppen, W. P. and R. Geiger. 1930–1939. Handbuch der Klimatologie . 6 volumes, Gebruder Borntraeger, Berlin.

    Geiger R. , '', in Handbuch der Klimatologie. 6 volumes , (1930 ) -.

  • Lance, G.N. and W.T. Williams. 1967. A general theory of classificatory sorting strategies. I. Hierarchical systems. Computer J. 9: 373–380.

    Williams W.T. , 'A general theory of classificatory sorting strategies. I. Hierarchical systems ' (1967 ) 9 Computer J. : 373 -380.

    • Search Google Scholar
  • Lang, S. 1972. Linear Algebra . Addison-Wesley, Reading, MA.

    Lang S. , '', in Linear Algebra , (1972 ) -.

  • Lebart, L., A. Morineau and M. Piron. 1995. Statistique exploratoire multidimensionnelle . Dunod, Paris.

    Piron M. , '', in Statistique exploratoire multidimensionnelle , (1995 ) -.

  • Legendre, P. and L. Legendre. 1998. Numerical Ecology , 2nd English edition. Elsevier, Amsterdam.

    Legendre L. , '', in Numerical Ecology , (1998 ) -.

  • Lerman, I.C. 1981. Classification et analyse ordinale des données . Dunod, Paris.

    Lerman I.C. , '', in Classification et analyse ordinale des données , (1981 ) -.

  • McQuitty, L.L. 1967. Expansion of similarity analysis by reciprocal pairs for discrete and continuous data. Educational and Psychological Measurement 27: 253–255.

    McQuitty L.L. , 'Expansion of similarity analysis by reciprocal pairs for discrete and continuous data ' (1967 ) 27 Educational and Psychological Measurement : 253 -255.

    • Search Google Scholar
  • Milligan, G.W. and M.C. Cooper. 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50: 159–179.

    Cooper M.C. , 'An examination of procedures for determining the number of clusters in a data set ' (1985 ) 50 Psychometrika : 159 -179.

    • Search Google Scholar
  • Nelson, B.D. 2001. Variable Reduction for Modeling using PROC VARCLUS . Proceedings of the 26th annual SAS User Group International Conference. SAS Institute, Cory, NC.

    Nelson B.D. , '', in Proceedings of the 26th annual SAS User Group International Conference , (2001 ) -.

  • Orlóci, L. 1978. Multivariate Analysis in Vegetation Research . 2nd ed. Junk, The Hague.

    Orlóci L. , '', in Multivariate Analysis in Vegetation Research , (1978 ) -.

  • Pillar, V.D. 1988. Fatores de ambiente relacionados à variação da vegetação de um campo natural. M.Sc. Dissertation. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

    Pillar V.D. , '', in Fatores de ambiente relacionados à variação da vegetação de um campo natural , (1988 ) -.

  • Pillar, V.D. 1999. The bootstrapped ordination re-examined. J. Veg. Sci. 10: 895–902.

    Pillar V.D. , 'The bootstrapped ordination re-examined ' (1999 ) 10 J. Veg. Sci. : 895 -902.

  • Pillar, V.D. 2006. MULTIV: Multivariate Exploratory Analysis, Randomization Testing and Bootstrap Resampling, User’s Guide version 2.4 , Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

    Pillar V.D. , '', in MULTIV: Multivariate Exploratory Analysis, Randomization Testing and Bootstrap Resampling, User’s Guide version 2.4 , (2006 ) -.

  • Pillar, V.D., A.V.A. Jacques and I.I. Boldrini. 1992. Factores de ambiente relacionados à variação da vegetação de um campo natural. Pesquisa Agropecuária Brasileira 27: 1089–1101.

    Boldrini I.I. , 'Factores de ambiente relacionados à variação da vegetação de um campo natural ' (1992 ) 27 Pesquisa Agropecuária Brasileira : 1089 -1101.

    • Search Google Scholar
  • Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data . Backhuys, Leiden.

    Podani J. , '', in Introduction to the Exploration of Multivariate Biological Data , (2000 ) -.

  • Podani, J. 2001. SYN-TAX 2000 — Computer Programs for Data Analysis in Ecology and Systematics . Scientia Publishing, Budapest.

    Podani J. , '', in SYN-TAX 2000 — Computer Programs for Data Analysis in Ecology and Systematics , (2001 ) -.

  • Qannari, E.M., E. Vigneau and Ph. Courcoux. 1999. Classification des variables autour de composantes principales; applications. XXXI Journées de Statistique — 17–21 mai 1999 — Grenoble France. Résumés, Société Française de Statistique: 677–679.

  • SAS Institute. 1999. SAS Online Doc, Version 8 . SAS Institute Inc, Cary, North Carolina.

    '', in SAS Online Doc, Version 8 , (1999 ) -.

  • Shaffer, R. et al. 1999. SPSS for Windows 9.0: A Basic Tutorial . McGraw-Hill, New York.

    Shaffer R. , '', in SPSS for Windows 9.0: A Basic Tutorial , (1999 ) -.

  • Sokal, R.R. and C.D. Michener. 1958. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38: 1409–1438.

    Michener C.D. , 'A statistical method for evaluating systematic relationships ' (1958 ) 38 University of Kansas Science Bulletin : 1409 -1438.

    • Search Google Scholar
  • Tedesco, M.J., S.J. Volkweiss and H. Bohnen. 1985. Análises de Solos, Plantas e Outros Materiais . Faculdade de Agronomia, UFRGS, Porto Alegre.

    Bohnen H. , '', in Análises de Solos, Plantas e Outros Materiais , (1985 ) -.

  • Torgerson, W.S. 1958. Theory and Methods of Scaling . Wiley, New York.

    Torgerson W.S. , '', in Theory and Methods of Scaling , (1958 ) -.

  • Vigneau, E., E.M. Qannari, K. Sahmer and D. Ladiray. 2006. Classification de variables autour de composantes latentes. Rev. Statistique Appliquée 54: 27–45.

    Ladiray D. , 'Classification de variables autour de composantes latentes ' (2006 ) 54 Rev. Statistique Appliquée : 27 -45.

    • Search Google Scholar
  • Wallace, C.S. and M.B. Dale 2005. Hierarchical clusters of vegetation types. Community Ecol. 6:57–74.

    Dale M.B. , 'Hierarchical clusters of vegetation types ' (2005 ) 6 Community Ecol. : 57 -74.

  • Ward, J.H. 1963. Hierarchical Grouping to Optimize an Objective Function. J. Amer. Stat. Assoc. 58:236–244.

    Ward J.H. , 'Hierarchical Grouping to Optimize an Objective Function ' (1963 ) 58 J. Amer. Stat. Assoc. : 236 -244.

    • Search Google Scholar
  • Wildi, O. and L. Orlóci. 1996. Numerical Exploration of Community Patterns. A guide to the use of MULVA-5 . 2nd edition. SPB Academic Publishing b.v., Amsterdam.

    Orlóci L. , '', in Numerical Exploration of Community Patterns. A guide to the use of MULVA-5 , (1996 ) -.