View More View Less
  • 1 University of Rome “La Sapienza” Department of Plant Biology Piazzale Aldo Moro 5 00185 Rome Italy
  • 2 Research Unit Ecosystem Boundaries Swiss Federal Research Institute WSL Via Belsoggiorno 22 6500 Bellinzona Switzerland
Restricted access

Recently, a number of measures of functional diversity have been proposed for data on species presences and absences. One of the most fashionable methods uses cluster analysis of species computed from a matrix of functional characters. Functional diversity is then summarized as the sum of branch lengths of the dendrogram (FDD). Like other graph-theoretical measures of functional diversity, FDD is an increasing function of species richness. This makes FDD inadequate for comparative studies if we want to quantify a component of functional diversity that is not directly related to differences in species counts. The aim of this paper is thus to develop a graph-theoretical measure of functional diversity that does not depend of species richness. The edges of the minimum spanning tree, calculated from the pair-wise inter-species dissimilarity matrix based on functional traits, are ranked and then a power law relationship is established with the cumulative distances. We empirically demonstrate that the exponent of this relationship is independent of species richness and is therefore a suitable measure of functional diversity.

  • Botta-Dukát, Z. 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16: 533–540.

    Botta-Dukát Z. , 'Rao’s quadratic entropy as a measure of functional diversity based on multiple traits ' (2005 ) 16 J. Veg. Sci. : 533 -540.

    • Search Google Scholar
  • da Silva, I.A. and M.A. Batalha. 2006. Taxonomic distinctness and diversity of a hyperseasonal savanna in Central Brazil. Divers. Distrib. 12: 725–730.

    Batalha M.A. , 'Taxonomic distinctness and diversity of a hyperseasonal savanna in Central Brazil ' (2006 ) 12 Divers. Distrib. : 725 -730.

    • Search Google Scholar
  • Díaz, S. and M. Cabido. 2001. Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16: 646–650.

    Cabido M. , 'Vive la difference: plant functional diversity matters to ecosystem processes ' (2001 ) 16 Trends Ecol. Evol. : 646 -650.

    • Search Google Scholar
  • de Bello, F., J. Lepš, S. Lavorel and M. Moretti. 2007. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecol. 8: 163–170.

    Moretti M. , 'Importance of species abundance for assessment of trait composition: an example based on pollinator communities ' (2007 ) 8 Community Ecol. : 163 -170.

    • Search Google Scholar
  • de Bello, F., J. Lepš and M.T. Sebastià. 2006. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29: 801–810.

    Sebastià M.T. , 'Variations in species and functional plant diversity along climatic and grazing gradients ' (2006 ) 29 Ecography : 801 -810.

    • Search Google Scholar
  • Faith, D.P. 1992. Conservation evaluation and phylogenic diversity. Biol. Cons. 61: 1–10.

    Faith D.P. , 'Conservation evaluation and phylogenic diversity ' (1992 ) 61 Biol. Cons. : 1 -10.

    • Search Google Scholar
  • Farris, J.S. 1970. Methods for computing Wagner trees. Syst. Zool. 19: 83–92.

    Farris J.S. , 'Methods for computing Wagner trees ' (1970 ) 19 Syst. Zool. : 83 -92.

  • Fonseca, C.R. and G. Ganade. 2001. Species functional redundancy, random exinctions and the stability of ecosystems. J. Ecol. 89: 118–125.

    Ganade G. , 'Species functional redundancy, random exinctions and the stability of ecosystems ' (2001 ) 89 J. Ecol. : 118 -125.

    • Search Google Scholar
  • Gower, J.C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857–874.

    Gower J.C. , 'A general coefficient of similarity and some of its properties ' (1971 ) 27 Biometrics : 857 -874.

    • Search Google Scholar
  • Gower, J.C. and G.J.S. Ross. 1969. Minimum spanning trees and single linkage cluster analysis. Appl. Stat. 18: 54–64.

    Ross G.J.S. , 'Minimum spanning trees and single linkage cluster analysis ' (1969 ) 18 Appl. Stat. : 54 -64.

    • Search Google Scholar
  • Heemsbergen, D.A., M.P. Berg, M. Loreau, J.R. van Hal, J.H. Faber and H.A. Verhoef. 2004. Biodiversity effects on soil processes explained by intraspecific functional dissimilarity. Science 306: 1019.

    Verhoef H.A. , 'Biodiversity effects on soil processes explained by intraspecific functional dissimilarity ' (2004 ) 306 Science : 1019 -.

    • Search Google Scholar
  • Lawton, J.H., S. Naeem, L.J. Thompson, A. Hector and M.J. Crawley. 1998. Biodiversity and ecosystem function: getting the Ecotron experiment in its correct context. Funct. Ecol. 12: 848–852.

    Crawley M.J. , 'Biodiversity and ecosystem function: getting the Ecotron experiment in its correct context ' (1998 ) 12 Funct. Ecol. : 848 -852.

    • Search Google Scholar
  • Lepš, J., F. de Bello, S. Lavorel and S. Berman. 2006. Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78: 481–501.

    Berman S. , 'Quantifying and interpreting functional diversity of natural communities: practical considerations matter ' (2006 ) 78 Preslia : 481 -501.

    • Search Google Scholar
  • Loreau, M. and A. Hector. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412: 72–76.

    Hector A. , 'Partitioning selection and complementarity in biodiversity experiments ' (2001 ) 412 Nature : 72 -76.

    • Search Google Scholar
  • Mandelbrot, B.B. 1983. The Fractal Geometry of Nature . Freeman, San Francisco.

    Mandelbrot B.B. , '', in The Fractal Geometry of Nature , (1983 ) -.

  • Mason, N.V.H., D. Mouillot, W.G. Lee and J.B. Wilson. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112–118.

    Wilson J.B. , 'Functional richness, functional evenness and functional divergence: the primary components of functional diversity ' (2005 ) 111 Oikos : 112 -118.

    • Search Google Scholar
  • Moretti, M., P. Duelli, K.M. Obrist. 2006. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149: 312–327.

    Obrist K.M. , 'Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests ' (2006 ) 149 Oecologia : 312 -327.

    • Search Google Scholar
  • Mouillot, D., N.W.H. Mason, O. Dumay and J.B. Wilson. 2005. Functional regularity: a neglected aspect of functional diversity. Oecologia 142: 353–359.

    Wilson J.B. , 'Functional regularity: a neglected aspect of functional diversity ' (2005 ) 142 Oecologia : 353 -359.

    • Search Google Scholar
  • Mouillot, D. and J.B. Wilson. 2002. Can we tell how a community was constructed? A comparison of five evenness indices for their ability to identify theoretical models of community construction. Theor. Popul. Biol. 61: 141–151.

    Wilson J.B. , 'Can we tell how a community was constructed? A comparison of five evenness indices for their ability to identify theoretical models of community construction ' (2002 ) 61 Theor. Popul. Biol. : 141 -151.

    • Search Google Scholar
  • Petchey, O.L. and K.J. Gaston. 2002. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5: 402–411.

    Gaston K.J. , 'Functional diversity (FD), species richness and community composition ' (2002 ) 5 Ecol. Lett. : 402 -411.

    • Search Google Scholar
  • Petchey, O.L. and K.J. Gaston. 2006. Functional diversity: back to basics and looking forward. Ecol. Lett. 9: 741–758.

    Gaston K.J. , 'Functional diversity: back to basics and looking forward ' (2006 ) 9 Ecol. Lett. : 741 -758.

    • Search Google Scholar
  • Podani., J. 1999. Extending Gower’s general coefficient of similarity to ordinal characters. Taxon 48: 331–340.

    Podani J. , 'Extending Gower’s general coefficient of similarity to ordinal characters ' (1999 ) 48 Taxon : 331 -340.

    • Search Google Scholar
  • Podani. J. 2000. Introduction to the Exploration of Multivariate Biological Data . Backhuys Publishers, Leiden.

    Podani J. , '', in Introduction to the Exploration of Multivariate Biological Data , (2000 ) -.

  • Podani, J. 2001. SYN-TAX 2000. Computer Programs for Data Analysis in Ecology and Systematics. User’s Manual . Scientia, Budapest.

    Podani J. , '', in SYN-TAX 2000. Computer Programs for Data Analysis in Ecology and Systematics. User’s Manual , (2001 ) -.

  • Podani, J., P. Csontos, J. Tamás and I. Miklós. 2005. A new multivariate approach to studying temporal changes of vegetation. Plant. Ecol. 181: 1–16.

    Miklós I. , 'A new multivariate approach to studying temporal changes of vegetation ' (2005 ) 181 Plant. Ecol. : 1 -16.

    • Search Google Scholar
  • Podani, J. and D. Schmera. 2006. On dendrogram-based measures of functional diversity. Oikos 115: 179–185.

    Schmera D. , 'On dendrogram-based measures of functional diversity ' (2006 ) 115 Oikos : 179 -185.

    • Search Google Scholar
  • Ricotta, C. 2004. Aparametric diversity measure combining the relative abundances and taxonomic distinctiveness of species. Divers. Distrib. 10: 143–146.

    Ricotta C. , 'Aparametric diversity measure combining the relative abundances and taxonomic distinctiveness of species ' (2004 ) 10 Divers. Distrib. : 143 -146.

    • Search Google Scholar
  • Ricotta, C. 2005. A note on functional diversity measures. Basic Appl. Ecol. 6: 479–486.

    Ricotta C. , 'A note on functional diversity measures ' (2005 ) 6 Basic Appl. Ecol. : 479 -486.

    • Search Google Scholar
  • Ricotta, C. 2007. A semantic taxonomy for diversity measures. Acta Biotheor. 55: 23–33.

    Ricotta C. , 'A semantic taxonomy for diversity measures ' (2007 ) 55 Acta Biotheor. : 23 -33.

    • Search Google Scholar
  • Sherwin, W.B., F. Jabot, R. Rush and M. Rossetto. 2006. Measurement of biological information with applications from genes to landscapes. Mol. Ecol. 15: 2857–2869.

    Rossetto M. , 'Measurement of biological information with applications from genes to landscapes ' (2006 ) 15 Mol. Ecol. : 2857 -2869.

    • Search Google Scholar
  • Solow, A.R. and S. Polasky. 1994. Measuring biological diversity. Environ. Ecol. Stat. 1: 95–107.

    Polasky S. , 'Measuring biological diversity ' (1994 ) 1 Environ. Ecol. Stat. : 95 -107.

  • Tilman, D. 2001. Functional diversity. In: S.A. Levin (ed.), Encyclopedia of Biodiversity . Academic Press, San Diego, pp. 109–120.

    Tilman D. , '', in Encyclopedia of Biodiversity , (2001 ) -.

  • Tjørve, E. 2003. Shapes and functions of species-area curves: a review of possible models. J. Biogeogr. 30: 827–835.

    Tjørve E. , 'Shapes and functions of species-area curves: a review of possible models ' (2003 ) 30 J. Biogeogr. : 827 -835.

    • Search Google Scholar
  • Von Euler, F. and S. Svensson. 2001. Taxonomic distinctness and species richness as measures of functional structure in bird assemblages. Oecologia 129: 304–311.

    Svensson S. , 'Taxonomic distinctness and species richness as measures of functional structure in bird assemblages ' (2001 ) 129 Oecologia : 304 -311.

    • Search Google Scholar
  • Walker, B., A.P. Kinzig and J. Langridge. 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2: 95–113.

    Langridge J. , 'Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species ' (1999 ) 2 Ecosystems : 95 -113.

    • Search Google Scholar
  • Weitzman, M.L. 1992. On diversity. Quart. J. Econ. 107: 363–405.

    Weitzman M.L. , 'On diversity ' (1992 ) 107 Quart. J. Econ. : 363 -405.

  • Hill, M.O. 1997. An evenness statistic based on the abundance-weighted variance of species proportions. Oikos 79: 413–416.

    Hill M.O. , 'An evenness statistic based on the abundance-weighted variance of species proportions ' (1997 ) 79 Oikos : 413 -416.

    • Search Google Scholar
  • Juhász-Nagy, P. 1993. Notes on compositional diversity. Hydrobiologia 249: 173–182.

    Juhász-Nagy P. , 'Notes on compositional diversity ' (1993 ) 249 Hydrobiologia : 173 -182.

  • Laherrère, J.H. 1996. Distributions de type fractal parabolique dans la Nature. C. R. Acad. Sci. Paris II 322: 535–541.

    Laherrère J.H. , 'Distributions de type fractal parabolique dans la Nature ' (1996 ) 322 C. R. Acad. Sci. Paris II : 535 -541.

    • Search Google Scholar
  • Laherrère, J.H. and D. Sornette. 1998. Stretched exponential distributions in nature and economy: “Fat tails” with characteristic scales. Eur. Phys. J. B 2: 525–539.

    Sornette D. , 'Stretched exponential distributions in nature and economy: “Fat tails” with characteristic scales ' (1998 ) 2 Eur. Phys. J. B : 525 -539.

    • Search Google Scholar
  • Landini, G. and J.P. Rigaut. 1997. A method for estimating the dimension of asymptotic fractal sets. Bioimaging 5: 65–70.

    Rigaut J.P. , 'A method for estimating the dimension of asymptotic fractal sets ' (1997 ) 5 Bioimaging : 65 -70.

    • Search Google Scholar