Authors:
Ivana Dencic Micro Flow Chemistry & Process Technology/Laboratory of Chemical Reactor Engineering, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, P.O. Box 513, Netherlands

Search for other papers by Ivana Dencic in
Current site
Google Scholar
PubMed
Close
,
Jan Meuldijk Micro Flow Chemistry & Process Technology/Laboratory of Chemical Reactor Engineering, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, P.O. Box 513, Netherlands

Search for other papers by Jan Meuldijk in
Current site
Google Scholar
PubMed
Close
,
Mart de Croon Micro Flow Chemistry & Process Technology/Laboratory of Chemical Reactor Engineering, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, P.O. Box 513, Netherlands

Search for other papers by Mart de Croon in
Current site
Google Scholar
PubMed
Close
, and
Volker Hessel Micro Flow Chemistry & Process Technology/Laboratory of Chemical Reactor Engineering, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, P.O. Box 513, Netherlands

Search for other papers by Volker Hessel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A methodology for the ex ante evaluation of different processing options is proposed. Current processes for glucose oxidation and possible improvements using microreactor technology are investigated. As twofold prime research objectives, the oxidation with noble metal catalyst versus enzymatic oxidation and the oxidation under conventional process conditions versus under Novel Process Windows are explored. Operation and design of an active and stable catalyst, reactor performance, and work-up are included. This ex ante analysis gives information of the critical aspects of a process prior to technology development and facilitates the development of new process routes; especially valuable if step and paradigm changing routes are undertaken, with even no vague idea on their performance potential and with high technological risk. The methodology used for gluconic acid production will be transferred to other chemicals which have the potential in using microreactor technology and Novel Process Windows.

  • 1. Röper, H.; Koch, H. Starch/Stärke 1988, 40, 453.

  • 2. Vleeming, J. H. Deactivation of Carbon Supported Platinum Catalyst During Carbohydrate Oxidation. Ph.D. Thesis, Eindhoven University of technology, Eindhoven, 1997.

    • Search Google Scholar
    • Export Citation
  • 3. Biella, S.; et al. J. Catal. 2002, 206, 242247.

  • 4. Commoti, M.; et al. J. Catal. 2006, 244, 122125.

  • 5. Commoti, M.; et al. J. Mol. Catal. A Chem. 2006, 251, 8992.

  • 6. Znad, H.; et al. Process Biochem. 2004, 39, 13411345.

  • 7. Ramachandran, S.; et al. Food Technol. Biotechnol. 2006, 44 (2), 185195.

  • 8. Illg, T.; Löb P.; Hessel, V. Bioorg. Med. Chem. 2010, 18 (11), 37073719.

  • 9. Hessel, V.; Hardt, S.; Löwe, H. Chemical Micro Process Engineering – Fundamentals, Modelling and Reactions; Wiley-VCH: Weinheim, 2004.

    • Search Google Scholar
    • Export Citation
  • 10. Hessel, V.; Knobloch, C.; Löwe, H. Recent Patents Chem. Eng. 2008, 1, 116.

  • 11. Roberge, D.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Chem. Eng. Technol. 2005, 28 (3), 318323.

  • 12. Ehrfeld, W.; Hessel, V.; Lowe, H. Microreactors: New Technology for Modern Chemistry; Wiley-VCH: Weinheim, 2000.

  • 13. Jensen, K. F. Chem. Eng. Sci. 2001, 56, 293303.

  • 14. Pennemann, H.; et al. Chem. Eng. Sci. 2004, 59, 47894794.

  • 15. POLYCAT. EU large-scale project, modern polymer-based catalysts and microflow conditions as key elements of innovations in fine chemical synthesis; 2010.

    • Search Google Scholar
    • Export Citation
  • 16. Wang, S. Anal. Biochem. 2010, 405, 230235.

  • 17. Gangwal, V. Platinum Catalyzed Alcohol Oxidation: Kinetics, Reaction Engineering and Process Design. Ph.D. Thesis, Eindhoven University of technology, Eindhoven, 2005.

    • Search Google Scholar
    • Export Citation
  • 18. Besson, M.; Gallezot, P. Catal. Today 2000, 57, 127141.

  • 19. Swarts, J. Chem. Eng. J. 2010, 162, 301306.

  • 20. Miyazaki, M.; et al. Biotechnol. Genet. Eng. Rev. 2008, 25, 405428.

  • 21. European roadmap for process intensification, http://www.senternovem.nl/mmfiles/Report%2520%2527European%2520Roadmap%2520for%2520Process%2520Intensification%2527_tcm24-258503_tcm24-271299.pdf.

    • Search Google Scholar
    • Export Citation
  • 22. Huebschmann, S.; Kralisch, D.; Hessel, V.; Krtschil, U.; Kompter, C. Chem. Eng. Technol. 2009, 32 (11), 17571765.

  • 23. Hessel, V. Chem. Eng. Technol. 2009, 32 (11), 16551681.

  • 24. Hessel, V.; Kralisch, D.; Krtschil, U. Energy Environ. Sci. 2008, 1 (4), 467478.

  • 25. Kralisch, D.; Kreisel, G. Chem. Eng. Sci. 2007, 62 (4), 1094.

  • 26. Kralisch, D. Application of LCA in Process Development. In Green Chemistry Metrics: Measuring and Monitoring Sustainable Processes; Lapkin, A., Constable, D. J. C., Eds.; John Wiley, Chichester, UK, 2009.

    • Search Google Scholar
    • Export Citation
  • 27. Krtschil, U.; Hessel, V.; Kralisch, D.; Kreisel, G.; Küpper, M.; Schenk, R. Chimia 2006, 60 (9), 611617.

  • 28. Hessel, V.; Cortese, B.; de Croon, M. H. J. M. Chem. Eng. Sci. DOI:10.1016/j.ces.2010.08.018.

  • 29. Malat, T.; Baiker, A. Catal. Today 1995, 24, 143150.

  • 30. Dijkgraaf, P. J. M. Oxidation of Glucose to Glucaric Acid by Pt/C Catalyst. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, 1989.

    • Search Google Scholar
    • Export Citation
  • 31. Gogová Z. ; Hanika, J. Chem. Eng. J. 2009, 150, 223230.

  • 32. Matveeva, V.; et al. Top Catal. 2009, 52, 387393.

  • 33. Önal, Y.; Schimpf, S.; Claus, P. J. Catal. 2004, 223, 122133.

  • 34. Odebunmi, E. O.; Owalude, S. O. J. Appl. Sci. Environ. Manag. 2007, 11 (4), 95100.

  • 35. Beltrame, P. J. Catal. 2004, 228, 282287.

  • 36. Klein, J.; et al. Biochem. Eng. J. 2002, 10, 197205.

  • 37. Doneva, T.; Vassilief, C.; Donev, R. Biotechnol. Lett. 1999, 21, 11071111.

  • 38. Blandino, A.; Macias, M.; Cantero, D. Process Biochem. 2001, 36, 601606.

  • 39. Bankar, S. B.; et al. Biotechnol. Adv. 2009, 27, 489501.

  • 40. Godjevargova, T.; Dayal, R.; Turmanova, S. Macromol. Biosci. 2004, 4, 950956.

  • 41. Hestekin, J. A.; et al. J. Appl. Electrochem. 2002, 32, 10491052.

  • 42. Giorno, L.; Drioli, E. TIBTECH 2000, 18, 339349.

  • 43. Bao, J.; et al. Biochem. Eng. J. 2004, 22, 3341.

  • 44. Miron, J.; et al. Enzym. Microb. Technol. 2004, 34, 513522.

  • 45. Astruc, D. Nanoparticles and Catalysis; Wiley-VCH: Weinheim, 2008; p 412.

  • 46. Dworkin, M.; et al. (2006) The Prokaryotes: A Handbook of the Biology of Bacteria: Symbiotic Associations, Biotechnology, Applied Microbiology; Springer Science and Business Media, 2006; Vol. 1.

    • Search Google Scholar
    • Export Citation
  • 47. Sulman, E.; et al. J. Mol. Catal. A Chem. 2007, 278, 112119.

  • 48. Rahman, M.; Heikkilä A. M.; Hurme, M. J. Loss Prev. Proc. Ind. 2005, 18, 327.

  • 49. IMM Falling film microreactor, technical data, http://www.imm-mainz.de/fileadmin/IMM-upload/Flyer-Katalog_etc/Catalogue09_FFMR.pdf, last accessed: Mar 2011.

  • 50. Zanfir, M. Ind. Eng. Chem. Res. 2005, 44, 17421751.

  • 51. Ehrich, H.; Linke, D.; Morgenschweis, K.; Baerns, M.; Jaehnisch, K. Chimia 2002, 56, 647653.

  • 52. Yeong, K. K.; et al. Catal. Today 2003, 81, 641651.

  • 53. Jaehnisch, K.; Baerns, M.; Hessel, V.; Ehrfeld, W.; Haverkamp, V.; Loewe, H.; Wille, C.; Guber, A. J. Fluor. Chem. 2000, 105, 117128.

    • Search Google Scholar
    • Export Citation
  • 54. Vankayala, B. K.; et al. Int. J. Chem. React. Eng. 2007, 5, Article A91.

  • 55. Commenge, J. M.; et al. Chem. Eng. Sci. 2006, 61, 597604.

  • 56. Commenge, J. M.; et al. Chem. Eng. Sci. 2011, 66, 12121218.

  • 57. van Male, P.; et al. Int. J. Heat Mass Tran. 2004, 47, 8799.

  • 58. Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2007; Electronic Release.

  • 59. Tonkovich, A. Trans IChemE A Chem. Eng. Res. Des. 2005, 83 (A6): 634639.

  • 60. Losey, M. W.; Schmidt, M. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2001, 40, 25552562.

  • 61. Al Dahhan , Larachi, Dudukovic, Laurent. Ind. Eng. Chem. Res. 1997, 36 (8), 32923314.

  • 62. White, R.; et al. Chem. Soc. Rev. 2009, 38, 481494.

  • 63. Sheldon, R. Adv. Synth. Catal. 2007, 349, 12891307.

  • 64. Krenkova, J.; Foret, F. Electrophoresis 2004, 25, 35503563.

  • 65. Matosevic, S. Biotechnol. Prog. 2010, 26 (1), 118126.

  • 66. Urban, P. L.; et al. Biotechnol. Adv. 2006, 24, 4257.

  • 67. Schilke, K. Biotechnol. Prog. 2010, 26 (6), 15971605.

  • 68. Thomsen, M. Biotechnol. J. 2009, 4, 98107.

  • 69. Ji, X.; et al. Talanta 2010, 82, 11701174.

  • 70. Matsuura, S.; et al. Chem. Eng. J. 2010.

  • 71. Mugo, M.; et al. J. Mol. Catal. B Enzym. 2010, 67, 202207.

  • 72. Miyazaki, M.; et al. Chem. Eng. J. 2004, 101, 277284.

  • 73. Mohr, X.; et al. Lab Chip 2010, 10, 19291936.

  • 74. Baiker, A. Chem. Rev. 1999, 99, 453473.

  • 75. Kayrak-Talay, D.; Akman, U.; Hortac, O. J. Supercrit. Fluids 2007, 42, 273281.

  • 76. CheManager, www.chemanager-online.com, last accessed: Jun 2011.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Flow Chemistry
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Áramlásos Kémiai Tudományos Társaság
Founder's
Address
H-1031 Budapest, Hungary Záhony utca 7.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-249X (Print)
ISSN 2063-0212 (Online)