Authors:
Kazuma Mawatari Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, 115–8656, Japan

Search for other papers by Kazuma Mawatari in
Current site
Google Scholar
PubMed
Close
,
Yutaka Kazoe Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, 115–8656, Japan

Search for other papers by Yutaka Kazoe in
Current site
Google Scholar
PubMed
Close
,
Arata Aota Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, 115–8656, Japan

Search for other papers by Arata Aota in
Current site
Google Scholar
PubMed
Close
,
Takehiko Tsukahara Research Laboratory of Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo, 152–8550, Japan

Search for other papers by Takehiko Tsukahara in
Current site
Google Scholar
PubMed
Close
,
Kae Sato Department of Chemical and Biological Sciences, Japan Women's University, Mejiro, Tokyo, 112–8681, Japan

Search for other papers by Kae Sato in
Current site
Google Scholar
PubMed
Close
, and
Takehiko Kitamori Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, 115–8656, Japan

Search for other papers by Takehiko Kitamori in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Integrated microchemical systems on microchips, which are based on continuous microflows, are expected to become important tools for analysis and chemical synthesis applications for biological sciences and technologies. For these purposes, general integration concepts have been developed, including microunit operations (MUOs) and continuous-flow chemical processing (CFCP) to create fully functional systems for various chemical processing applications. The general methodology has enabled analysis, synthesis, and fabrication of chemical systems on microchips, and these microsystems have demonstrated superior performance (e.g., rapid, simple, easy operation, and highly efficient processing) compared to conventional methodologies. Microchemical technology has now entered the phase of practical application. In this review, we discuss the methods for integration of continuous flow-based chemical process on microchips, relevant technologies, and applications.

  • 1. Reyes, D. R.; Lossifidis, D.; Auroux, P. A.; Manz, A. Anal. Chem. 2002, 74, 26232636.

  • 2. Auroux, P. A.; Lossifidis, D.; Reyes, D. R.; Manz, A. Anal. Chem. 2002, 74, 26372652.

  • 3. Tokeshi, M.; Minagawa, T.; Uchiyama, K.; Hibara, A.; Sato, K.; Hisamoto, H.; Kitamori, T. Anal. Chem. 2002, 74, 15651571.

  • 4. Sato, K.; Tokeshi, M.; Kitamori, T.; Sawada, T. Anal. Sci. 1999, 15, 641645.

  • 5. Sorouraddin, H. M.; Hibara, A.; Proskrunin, M. A.; Kitamori, T. Anal. Sci. 2000, 16, 10331037.

  • 6. Hisamoto, H.; Horiuchi, T.; Uchiyama, K.; Tokeshi, M.; Hibara, A.; Kitamori, T. Anal. Chem. 2001, 73, 55515556.

  • 7. Hibara, A.; Nonaka, M.; Hisamoto, H.; Uchiyama, K.; Kikutani, Y.; Tokeshi, M.; Kitamori, T. Anal. Chem. 2002, 74, 17241728.

  • 8. Tokeshi, M.; Minagawa, T.; Kitamori, T. Anal. Chem. 2000, 72, 17111714.

  • 9. Tokeshi, M.; Minagawa, T.; Kitamori, T. J. Chromatogr. A 2000, 894, 1923.

  • 10. Surmeian, M.; Slyadnev, M. N.; Hisamoto, H.; Hibara, A.; Uchiyama, K.; Kitamori, T. Anal. Chem. 2002, 74, 20142020.

  • 11. Aota, A.; Nonaka, M.; Hibara, A.; Kitamori, T. Angew. Chem. Int. Ed. 2007, 46, 878880.

  • 12. Miyaguchi, H.; Tokeshi, M.; Kikutani, Y.; Hibara, A.; Inoue, H.; Kitamori, T. J. Chromatogr. A 2006, 1129, 105110.

  • 13. Hotokezaka, H.; Tokeshi, M.; Harada, M.; Kitamori, T.; Ikeda, Y. Prog. Nucl. Energy 2005, 47, 439447.

  • 14. Aota, A.; Hibara, A.; Kitamori, T. Anal. Chem. 2007, 79, 39193924.

  • 15. Hibara, A.; Nonaka, M.; Tokeshi, M.; Kitamori, T. J. Am. Chem. Soc. 2003, 125, 1495414955.

  • 16. Maruyama, T.; Uchida, J.; Ohkawa, T.; Futami, T.; Katayama, K.; Nishizawa, K.; Sotowa, K.; Kubora, F.; Kamiya, N.; Goto, M. Lab Chip 2003, 3, 308312.

    • Search Google Scholar
    • Export Citation
  • 17. Kralj, J. G.; Sahoo, H. R.; Jensen, K. F. Lab Chip 2007, 7, 256263.

  • 18. Hibara, A.; Tokeshi, M.; Uchiyama, K.; Hisamoto, H.; Kitamori, T. Anal. Sci. 2001, 17, 8993.

  • 19. Hachiya, H.; Matsumoto, T.; Kanda, K.; Tokeshi, M.; Yoshida, Y.; Kitamori, T. In Proc. Micro Total Anal. Syst. 2004, 99–101,.

  • 20. Aota, A.; Mawatari, K.; Kihira, Y.; Sasaki, M.; Kitamori, T. In Proc. Micro Total Anal. Syst. 2009, 609–611,.

  • 21. Ohira, S. I.; Toda, K. Lab Chip 2005, 5, 13741379.

  • 22. Timmer, B.; Olthuis, W.; van den Berg, A. Lab Chip 2004, 4, 252255.

  • 23. Sato, K.; Tokeshi, M.; Odake, T.; Kimura, H.; Ooi, T.; Kitamori, T. Anal. Chem. 2000, 72, 11441147.

  • 24. Sato, K.; Tokeshi, M.; Kimura, H.; Kitamori, T. Anal. Chem. 2001, 73, 12131218.

  • 25. Sato, K.; Yamanaka, M.; Takahashi, H.; Tokeshi, M.; Kimura, H.; Kitamori, T. Electrophoresis 2002, 23, 734739.

  • 26. Sato, K.; Yamanaka, M.; Hagino, T.; Tokeshi, M.; Kimura, H.; Kitamori, T. Lab Chip 2004, 4, 570575.

  • 27. Kakuta, M.; Takahashi, H.; Kazuno, S.; Murayama, K.; Ueno, T.; Tokeshi, M. Meas. Sci. Technol. 2006, 17, 31893194.

  • 28. Ohashi, T.; Mawatari, K.; Sato, K.; Tokeshi, M.; Kitamori, T. Lab Chip 2009, 9, 991995.

  • 29. Haes, A. J.; Terray, A.; Collins, G. E. Anal. Chem. 2006, 78, 84128420.

  • 30. Murakami, Y.; Endo, T.; Yamamura, N.; Nagatani, N.; Takamura, Y.; Tamiya, E. Anal. Biochem. 2004, 334, 111116.

  • 31. Sung, K.; Park, J. K. Lab Chip 2005, 5, 657664.

  • 32. Legendre, L. A.; Bienvenue, J. M.; Roper, M. G.; Ferrance, J. P.; Landers, J. P. Anal. Chem. 2006, 78, 14441451.

  • 33. Tan, A.; Benetton, S.; Henion, J. D. Anal. Chem. 2003, 75, 55045511.

  • 34. Oleschuk, R. D.; Shultz-Lockyear, L. L.; Ning, Y.; Harrison, D. J. Anal. Chem. 1999, 72, 585590.

  • 35. Tanaka, Y.; Slyadnev, M. N.; Hibara, A.; Tokeshi, M.; Kitamori, T. J. Chromatogr. A 2000, 894, 4551.

  • 36. Slyadnev, M. N.; Tanaka, Y.; Tokeshi, M.; Kitamori, T. Anal. Chem. 2001, 73, 40374044.

  • 37. Goto, M.; Sato, K.; Murakami, A.; Tokeshi, M.; Kitamori, T. Anal. Chem. 2005, 77, 21252131.

  • 38. Burns, M. A.; Johnson, B. N.; Brahmasandra, S. N.; Handique, K.; Webster, J. R.; Krishnan, M.; Sammarco, T. S.; Man, P. M.; Jones, D.; Heldsinger, D.; Mastrangelo, C. H.; Burke, D. T. Science 1998, 282, 484487.

    • Search Google Scholar
    • Export Citation
  • 39. Yoon, D. S.; Lee, Y. S.; Lee, Y.; Cho, H. J.; Sung, S. W.; Oh, K. W.; Cha, J.; Lim, G. J. Micromech. Microeng. 2002, 12, 813823.

  • 40. Tanaka, Y.; Sato, K.; Yamato, M.; Okano, T.; Kitamori, T. Anal. Sci. 2004, 20, 411423.

  • 41. Tanaka, Y.; Sato, K.; Yamato, M.; Okano, T.; Kitamori, T. J. Chromatogr. A 2006, 1111, 233237.

  • 42. Goto, M.; Tsukahara, T.; Sato, K.; Kitamori, T. Anal. Bioanal. Chem. 2008, 390, 817823.

  • 43. Breslauer, D. N.; Lee, P. J.; Lee, L. P. Mol. Biosyst. 2006, 2, 97112.

  • 44. El-Ali, J.; Sorger, P. K.; Jensen, K. F. Nature 2006, 442, 403411.

  • 45. Tokeshi, M.; Uchida, M.; Hibara, A.; Sawada, T.; Kitamori, T. Anal. Chem. 2001, 73, 21122116.

  • 46. Tokeshi, M.; Yamaguchi, J.; Hattori, A.; Kitamori, T. Anal. Chem. 2005, 77, 626630.

  • 47. Mawatari, K.; Tokeshi, M.; Kitamori, T. Anal. Sci. 2006, 22, 781784.

  • 48. Yamauchi, M.; Mawatari, K.; Hibara, A.; Tokeshi, M.; Kitamori, T. Anal. Chem. 2006, 78, 26462650.

  • 49. Hiki, S.; Mawatari, K.; Hibara, A.; Tokeshi, M.; Kitamori, T. Anal. Chem. 2006, 78, 28592863.

  • 50. Tamaki, E.; Sato, K.; Tokeshi, M.; Sato, K.; Aihara, M.; Kitamori, T. Anal. Chem. 2002, 74, 15601564.

  • 51. Ambrose, W. P.; Goodwin, P. M.; Jett, J. H.; Orden, A. V.; Werner, J. H.; Keller, R. A. Chem. Rev. 1999, 99, 29292956.

  • 52. Park, T.; Lee, S.; Seong, G. H.; Choo, J.; Lee, E. K.; Kim, Y. S.; Ji, W. H.; Hwang, S. Y.; Gweon, D.-G.; Lee, S. Lab Chip 2005, 5, 437442.

    • Search Google Scholar
    • Export Citation
  • 53. Kneipp, J.; Kneipp, H.; Kneipp, K. Chem. Soc. Rev. 2008, 37, 10521060.

  • 54. Kang, S. H.; Lee, S.; Yeung, E. S. Anal. Chem. 2004, 76, 44594464.

  • 55. Fan, F. R. F.; Bard, A. J. Science 1997, 277, 17911793.

  • 56. Zhao, Q.; Sigalov, G.; Dimitrov, V.; Dorvel, B.; Mirsaidov, U.; Sligar, S.; Aksimentiev, A.; Timp, G. Nano Lett. 2007, 7, 16801685.

    • Search Google Scholar
    • Export Citation
  • 57. Sahoof, H. R.; Kralj, J. G.; Jensen, K. F. Angew. Chem. Int. Ed. 2007, 46, 57045708.

  • 58. Kopp, M. U.; de Mello, A. J.; Manz, A. Science 1998, 280, 10461048.

  • 59. Brody, J. P.; Yager, P. Sens. Actuators A 1997, 58, 1318.

  • 60. Weigl, B. H.; Yager, P. Science 1999, 283, 346347.

  • 61. Burns, J. R.; Ramshaw, C. Lab Chip 2001, 1, 1015.

  • 62. Song, H.; Tice, J. D.; Ismagilov, R. F. Angew. Chem. Int. Ed. 2003, 42, 767772.

  • 63. Kralj, J. G.; Schmidt, M. A.; Jensen, K. F. Lab Chip 2005, 5, 531535.

  • 64. Aota, A.; Mawatari, K.; Takahashi, S.; Matsumoto, T.; Kanda, K.; Anraku, R.; Hibara, A.; Tokeshi, M.; Kitamori, T. Microchim. Acta 2009, 164, 249255.

    • Search Google Scholar
    • Export Citation
  • 65. Maruyama, T.; Kaji, T.; Ohkawa, T.; Sotowa, K.; Matsushita, H.; Kubota, F.; Kamiya, N.; Kusakabe, K.; Goto, M. Analyst 2004, 129, 10081013.

    • Search Google Scholar
    • Export Citation
  • 66. Zhao, B.; Moore, J. S.; Beebe, D. J. Science 2001, 291, 10231026.

  • 67. Zhao, B.; Moore, J. S.; Beebe, D. J. Anal. Chem. 2002, 74, 42594268.

  • 68. Van Der Linden, H. J.; Jellema, L. C.; Holwerda, M.; Verpoorte, E. Anal. Bioanal. Chem. 2006, 385, 13761383.

  • 69. Hibara, A.; Kasai, K.; Miyaguchi, H.; Kitamori, T. In Proc. Micro Total Anal. Syst. 2008, 1326–1328,.

  • 70. Hibara, A.; Iwayama, S.; Matsuoka, S.; Ueno, M.; Kikutani, Y.; Tokeshi, M.; Kitamori, T. Anal. Chem. 2005, 77, 943947.

  • 71. Takei, G.; Nonogi, M.; Hibara, A.; Kitamori, T.; Kim, H. B. Lab Chip 2007, 7, 596602.

  • 72. Takei, G.; Aota, A.; Hibara, A.; Kitamori, T.; Kim H. B. InProc. Micro Total Anal. Syst. 2007, 1213–1215,.

  • 73. Uchiyama, K.; Hibara, A.; Kimura, H.; Sawada, T.; Kitamori, T. Jpn. J. Appl. Phys. 2000, 39, 53165322.

  • 74. Bialkowski, S. E. Photothermal Spectroscopy Methods for Chemical Analysis; Wiley: New York, 1996.

  • 75. Nolan, T. G.; Dovichi, N. J. IEEE Circ. Dev. Mag. 1986, 1, 5456.

  • 76. Hiki, S.; Tokeshi, M.; Hibara, A.; Kitamori, T. Bunseki Kagaku 2003, 52, 569574.

  • 77. Kikutani, Y.; Mawatari, K.; Katayama, K.; Fukuzawa, T.; Tokeshi, M.; Kitamori, T. Sens. Actuators B 2008, 133, 9196.

  • 78. Kitamori, T.; Tokeshi, M.; Sato, K.; Hibara, A. Anal. Chem. 2004, 76, 52A60A.

  • 79. Andrew, J. Lab Chip 2001, 1, 7N12N.

  • 80. Massin, C.; Vincent, F.; Homsy, A.; Ehrmann, K.; Boero, G.; Besse, P.-A.; Daridon, A.; Verpoorte, E.; de Rooij, N. F.; Popovic, R. S. J. Magn. Reson. 2003, 164, 242255.

    • Search Google Scholar
    • Export Citation
  • 81. Takahashi, Y.; Nakakoshi, M.; Sakurai, S.; Akiyama, Y.; Suematsu, H.; Utsumi, H.; Kitamori, T. Anal. Sci. 2007, 23, 395400.

  • 82. Hisamoto, H.; Saito, T.; Tokeshi, M.; Hibara, A.; Kitamori, T. Chem. Commun. 2001, 26622663.

  • 83. Ueno, M.; Hisamoto, H.; Kitamori, T.; Kobayashi, S. Chem. Commun. 2003, 936.

  • 84. Kikutani, Y.; Horiuchi, T.; Uchiyama, K.; Hisamoto, H.; Tokeshi, M.; Kitamori, T. Lab Chip 2002, 2, 188192.

  • 85. Kikutani, Y.; Hibara, A.; Uchiyama, K.; Hisamaoto, H.; Tokeshi, M.; Kitamori, T. Lab Chip 2002, 2, 193196.

  • 86. Kobayashi, J.; Mori, Y.; Okamoto, K.; Akiyama, R.; Ueno, M.; Kitamori, T.; Kobayashi, S. Science 2004, 305, 13051308.

  • 87. Matsuoka, S.; Hibata, A.; Ueno, M.; Kitamori, T. Lab Chip 2006, 6, 12361238.

  • 88. Kawai, A.; Futami, T.; Kiriya, H.; Katayama, K.; Nishizawa, K. Proc. Micro Total Anal. Syst. 2002, 1, 368370.

  • 89. Hatch, A.; Kamholz, A. E.; Hawkins, K. R.; Munson, M. S.; Schilling, E. A.; Weigl, B. H.; Yager, P. Nat. Biotechnol. 2001, 19, 461465.

    • Search Google Scholar
    • Export Citation
  • 90. Hosokawa, K.; Omata, M.; Maeda, M. Anal. Chem. 2007, 79, 60006004.

  • 91. Holmes, D.; She, J. K.; Roach, P. L.; Morgan, H. Lab Chip 2007, 7, 10481056.

  • 92. Bernard, A.; Michel, B.; Delamarche, E. Anal. Chem. 2001, 73, 812.

  • 93. Henares, T. G.; Funano, S.; Terabe, S.; Mizutani, F.; Sekizawa, R.; Hisamoto, H. Anal. Chim. Acta 2007, 589, 173179.

  • 94. Zhang, Y.; Ozdemir, P. Anal. Chim. Acta 2009, 638, 115125.

  • 95. Easley, C. J.; Karlinsey, J. M.; Bienvenue, J. M.; Legendre, L. A.; Roper, M. G.; Feldman, S. H.; Hughes, M. A.; Hewlett, E. L.; Merkel, T. J.; Ferrance, J. P.; Landers, J. P. PNAS 2006, 103, 1927219277.

    • Search Google Scholar
    • Export Citation
  • 96. Toriello, N. M.; Douglas, E. S.; Thaitrong, N.; Hsiao, S. C.; Francis, M. B.; Bertozzi, C. R.; Mathies, R. PNAS 2008, 105, 2017320178.

    • Search Google Scholar
    • Export Citation
  • 97. Liu, P.; Mathies, R. A. Trends Biotechnol. 2009, 27, 572581.

  • 98. Ohira, S.; Toda, K. Anal. Chim. Acta 2008, 619, 143156.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Flow Chemistry
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Áramlásos Kémiai Tudományos Társaság
Founder's
Address
H-1031 Budapest, Hungary Záhony utca 7.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-249X (Print)
ISSN 2063-0212 (Online)