Authors:
Ketan Pimparkar Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-342, 02139, Cambridge, MA, USA

Search for other papers by Ketan Pimparkar in
Current site
Google Scholar
PubMed
Close
,
Bernard Yen Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-342, 02139, Cambridge, MA, USA

Search for other papers by Bernard Yen in
Current site
Google Scholar
PubMed
Close
,
John R. Goodell Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, 02215, Boston, MA, USA

Search for other papers by John R. Goodell in
Current site
Google Scholar
PubMed
Close
,
Veronique I. Martin Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, 02215, Boston, MA, USA

Search for other papers by Veronique I. Martin in
Current site
Google Scholar
PubMed
Close
,
Wen-Hsuan Lee Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-342, 02139, Cambridge, MA, USA

Search for other papers by Wen-Hsuan Lee in
Current site
Google Scholar
PubMed
Close
,
John A. Porco Jr. Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, 02215, Boston, MA, USA

Search for other papers by John A. Porco Jr. in
Current site
Google Scholar
PubMed
Close
,
Aaron B. Beeler Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, 02215, Boston, MA, USA

Search for other papers by Aaron B. Beeler in
Current site
Google Scholar
PubMed
Close
, and
Klavs F. Jensen Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-342, 02139, Cambridge, MA, USA

Search for other papers by Klavs F. Jensen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In an effort to utilize microfluidics to enable photochemistry, we have devised a method for fabrication of devices with UV-transmissive glass. The photochemical device is successfully incorporated into a system utilizing high-pressure capillary mercury lamps and cooling system. We have demonstrated the ability to carry out photochemical transformations with substantial rate acceleration. Furthermore, we highlight the ability to carry out analytical-scale reactions on a pulse flow automated system while modulating wavelength and residence time to identify optimal photochemical reaction conditions. The analytical conditions were also successfully converted to continuous-flow preparative scale.

  • 1. Coxon, J. M.; Halton, B. Organic Photochemistry; Cambridge University Press: Cambridge, 1987.

  • 2. (a) Hoffmann, N. Chem. Rev. 2008, 108, 10521103.

    (b)Winkler, J. D.; Bowen, C. M.; Liotta, F. Chem. Rev. 1995, 95, 20032020.

  • 3. M. Fagnoni D. Dondi D. Ravelli A. Albini 2007 Chem. Rev 107 27252756.

  • 4. P. Esser B. Pohlmann H.-D. Scharf 1994 Angew. Chem. Int. Ed 33 2009.

  • 5. Horspool, W. H. Synthetic Organic Photochemistry; Springer: New York, 1984.

  • 6. H. Lu M. A. Schmidt K. F. Jensen 2001 Lab Chip 1 2228.

  • 7. (a) Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675680.

    (b)Wirth, T. Microreactors in Organic Synthesis and Catalysis; Wiley-VCH: Weinheim, 2008.

    (c)Hartman, R. L.; Jensen, K. F. Lab Chip 2009, 9, 2495.

    (d)Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 23002318.

    (e)Geyer, K.; Gustavson, T.; Seeberger, P. H. Synlett 2009, 15, 2382.

    (f)Kirschning, A.; Solodenko, W.; Mennecke, K. Chem. Eur. J. 2006, 12, 5972.

    (g)Watts, P.; Wiles, C. Chem. Commun. 2007, 443467.

    (h)Baxendale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D. Angew. Chem. Int. Ed. 2009, 48, 40174021.

    (i)Kockmann, N.; Gottsponer, M.; Zimmermann, B.; Roberge, D. M. Chem. Eur. J. 2008, 14, 74707477. ( j) Yoshida, J.-I.; Nagaki, A.; Yamada, T. Chem. Eur. J. 2008, 14, 74507459.

    • Search Google Scholar
    • Export Citation
  • 8. J. R. Goodell ; J. P. McMullen N. Zaborenko J. R. Maloney C. X. Ho K. F. Jensen J. A. Porco A. B. Beeler 2009 J. Org. Chem 74 61696180.

  • 9. (a) Hook, B. D. A.; Dohle, W.; Hirst, P. R.; Pickworth, M.; Berry, M. B.; Booker-Milburn, K. I. J. Org. Chem. 2005, 70, 75587564.

    (b)Sakeda, K.; Wakabayashi, K.; Matsushita, Y.; Ichimura, T.; Suzuki, T.; Wada, T.; Inoue, Y. J. Photochem. Photobiol. Chem. 2007, 192, 166171.

    • Search Google Scholar
    • Export Citation

    (c)Coyle, E. E.; Oelgemoller, M. Photochem. Photobiol. Sci. 2008, 7, 13131322.

    (d)Vasudevan, A.; Villamil, C.; Trumbull, J.; Olson, J.; Sutherland, D.; Pan, J.; Djuric, S. Tetrahedron Lett. 2010, 51, 40074009.

  • 10. Matsushita, Y.; Kumada, S.; Wakabayashi, K.; Sakeda, K.; Ichimura, T. Chem. Lett. 2006, 35, 410411. Schott, Glass 8337B Technical Data. www.us.schott.com/tubing/media/selector/datasheets/english/Glass_8337b_datasheet_english.pdf.

    • Search Google Scholar
    • Export Citation
  • 11. Madou, M. J. Fundamentals of Microfabrication: The Science of Miniaturization; Boca Raton, FL: CRC Press, 2002.

  • 12. J. W. Hanifin E. Cohen 1969 J. Am. Chem. Soc 91 44944499.

  • 13. (a) Zimmerman, H. E.; Wilson, J. W. J. Am. Chem. Soc. 1964, 86, 4036.

    (b)Zimmerman, H. E.; Hancock, K. G. J. Am. Chem. Soc. 1968, 90, 3749.

    (c)Schuster, D. I.; Brown, R. H.; Resnick, B. M. J. Am. Chem. Soc. 1978, 100, 45044512.

    (d)Schuster, D. I.; Rao, J. M. J. Org. Chem. 1981, 46, 15151521.

  • 14. S. C. Shim D. S. Kim D. J. Yoo T. Wada Y. Inoue 2002 J. Org. Chem 67 57185726.

  • 15. D. R. Coulson N. C. Yang 1966 J. Am. Chem. Soc 88 45114512.

  • 16. (a) Fisch, M. H.; Richards, J. H. J. Am. Chem. Soc. 1968, 90, 15471553.

    (b)Natarajan, A.; Tsai, C. K.; Khan, S. I.; McCarren, P.; Houk, K. N.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2007, 129, 98469847.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Flow Chemistry
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Áramlásos Kémiai Tudományos Társaság
Founder's
Address
H-1031 Budapest, Hungary Záhony utca 7.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-249X (Print)
ISSN 2063-0212 (Online)