View More View Less
  • 1 Structural Chemistry, Advanced Technology, Global Research and Development, Abbott Laboratories, 100 Abbott Park Road, 60064, Abbott Park, IL, USA
  • 2 Medicinal Chemistry Technologies, Advanced Technology, Global Research and Development, Abbott Laboratories, 100 Abbott Park Road, 60064, Abbott Park, IL, USA
  • 3 Automation Engineering, Advanced Technology, Global Research and Development, Abbott Laboratories, 100 Abbott Park Road, 60064, Abbott Park, IL, USA
Restricted access

Abstract

We report herein a high-throughput integrated ynthesis–purification platform termed SWIFT (synthesis with integrated-flow technology) and processes that accelerate the rate at which validated small-molecule organic compounds are generated. A segmented-flow synthesizer was integrated to a preparative HPLC-MS, where each reaction product was purified immediately upon reaction completion. Further, automated structure-validation processes accelerate the rate at which drug discovery candidates are available for biological screening.

  • 1. J. A. DiMasi L. B. Faden 2011 Nat. Rev. Drug Discovery 10 2327.

  • 2. For examples see (a) Wang, Y.; Sarris, K.; Sauer, D. R.; Djuric, S. W. Tetrahedron Lett. 2007, 48, 51815184;

    (b)Wang, Y.; Sarris, K.; Sauer, D. R.; Djuric, S. W. Tetrahedron Lett. 2007, 48, 22372240;

    (c)Wang, Y.; Sauer, D. R.; Djuric, S. W. Tetrahedron Lett. 2005, 47, 105108.

  • 3. Hochlowski, J. E. High-Throughput Purification: Triage and Optimization. In Analysis and Purification Methods in Combinatorial Chemistry; Yan, B., ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; Vol. 163.

    • Search Google Scholar
    • Export Citation
  • 4. (a) Palmieri, A.; Ley, S. V.; Hammond, K.; Polyzos, A.; Baxendale, I. R. Tetrahedron Lett. 2009, 50, 32873289;

    (b)Ley, S. V.; Baxendale, I. R. Chimia 2008, 62, 162168;

    (c)Baxendale, I. R.; Hayward, J. J.; Ley, S. V. Combinatorial Chemistry & High Throughput Screening 2007, 10, 802836;

    (d)Baumann, M.; Baxendale, I. R.; Ley, S. V. Mol. Divers. 2011, 15, 613630;

    (e)Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675680;

    (f)Marrea, S.; Jensen, K. F. Chem. Soc. Rev. 2010, 39, 11831202;

    (g)Valera, F. E.; Quaranta, M.; Moran, A.; Blacker, J.; Armstrong, A.; Cabral, J. T.; Blackmond, D. G. Angew. Chem. Int. Ed. 2010, 49, 24782485.

    • Search Google Scholar
    • Export Citation
  • 5. H. Song D. L. Chen R. F. Ismagilov 2006 Angew. Chem. Int. Ed 45 73367356.

  • 6. (a) Pickett, S. D.; Green, D. V. S.; Hunt, D. L.; Pardoe, D. A.; Hughes, I. Med. Chem. Lett. 2011, 2, 2833;

    (b)Wong Hawkes, S. Y. F.; Chapela, M. J. V.; Montembault, M. QSAR Comb. Sci. 2005, 24, 712721;

    (c)Hughes, I.; Warrington, B. H.; Wong, Y. F. Microfluidic System. WO2004089533 A1, 2004.

  • 7. Accendo Corporation, Tucson, AZ. www.accendocorporation.com.

  • 8. AutoChem Private Limited, Singapore. www.autochem.com.sg/micro_reactor.htm.

  • 9. K. F. Blom 2002 J. Comb. Chem 4 295301.

  • 10. C. Hong J. P. Kiplinger W. K. Goetzinger R. O. Cole K. A. Laws M. Foster A. Schrock 2002 Rapid Commun. Mass. Spectrom 16 544554.

    • Search Google Scholar
    • Export Citation
  • 11. S. G. Spanton D. Whittern 2009 Magn. Reson. Chem 47 10551061.

  • 12. G. F. Pauli B. Jaki D. Lankin 2007 J. Nat. Prod 70 589595.

  • 13. Tu, N. P.; Hochlowski, J. E; Djuric, S. W. Mol. Divers. 2011, Sep 17. DOI 10.1007/s11030-011-9331-4. Also, see Bogdan, A. R.; Sach, N. W. Adv. Synth. Catal. 2009, 351, 849–854 for the version of this protocol without sonification.

    • Search Google Scholar
    • Export Citation