Hydrazoic acid (HN3) was used in a safe and reliable way for the synthesis of 5-substitued-1H-tetrazoles and for the preparation of N-(2-azidoethyl)acylamides in a continuous flow format. Hydrazoic acid was generated in situ either from an aqueous feed of sodium azide upon mixing with acetic acid, or from neat trimethylsilyl azide upon mixing with methanol. For both processes, subsequent reaction of the in situ generated hydrazoic acid with either organic nitriles (tetrazole formation) or 2-oxazolines (ring opening to β-azido-carboxamides) was performed in a coil reactor in an elevated temperature/pressure regime. Despite the explosive properties of HN3, the reactions could be performed safely at very high temperatures to yield the desired products in short reaction times and in excellent product yields. The scalability of both protocols was demonstrated for selected examples. Employing a commercially available benchtop flow reactor, productivities of 18.9 g/h of 5-phenyltetrazole and 23.0 g/h of N-(1-azido-2-methylpropan- 2-yl)acetamide were achieved.
1. T. Curtius 1890 Ber Dtsch. Chem. Ges 23 3023–3033.
2. For a discussion of safety aspects handling HN3 in a process environment, see (a) Kopach, M. E.; Murray, M. M.; Braden, T. M.; Kobierski, M. E.; Williams, O. L. Org. Process Res. Dev. 2009, 13, 152–160 and references cited therein; for further safety and general chemical properties of HN3, see
(b) Encyclopedia of Inorganic Chemistry; King, R. B. Ed., 2nd Edition; ()Wiley-VCH: Weinheim, 2005;
(c)Hagenbuch, J.-P. Chimia 2003, 57, 773–776.
3. Organic Azides: Syntheses and Applications; Bräse, S., Banert, K., Eds.;Wiley-VCH: Weinheim, 2010.
4. For recent selected reviews on continuous-flow/microreactor chemistry, see (a) Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem. Int. Ed. 2011, 50, 7502–7519;
(b)Wiles, C.; Watts, P. Chem. Commun. 2011, 47, 6512–6535;
(c)Wegner, J.; Ceylan, S.; Kirschning, A. Chem. Commun. 2011, 47, 4583–4592;
(d)Yoshida, J.-i.; Kim, H.; Nagaki, A. ChemSusChem 2011, 4, 331–340;
(e)McMullen, J. P.; Jensen, K. F. Annu. Rev. Anal. Chem. 2010, 3, 19–42;
(f)Illg, T.; Löb, P.; Hessel, V. Bioorg. Med. Chem. 2010, 18, 3707–3719;
(g)Frost, C. G.; Mutton, L. Green Chem. 2010, 12, 1687–1703;
(h)Geyer, K.; Gustafsson, T.; Seeberger, P. H. Synlett 2009, 2382–2391;
(i)Hartman, R. L.; Jensen, K. F. Lab Chip 2009, 9, 2495–2507.
5. For a selection of books on flow chemistry, see (a) Wiles, C.; Watts, P. Micro Reaction Technology in Organic Synthesis; CRC Press: Boca Raton, 2011;
(b) Micro Process Engineering: A Comprehensive Handbook; Hessel, V., Renken, A., Schouten, J. C., Yoshida, J.-i., Eds.; Wiley-VCH: Weinheim, 2009;
(c) Microreactors in Organic Synthesis and Catalysis; Wirth, T., Ed.; Wiley: Weinheim, 2008;
(d)Yoshida, J.-i. Flash Chemistry: Fast Organic Synthesis in Microsystems; Wiley: Chichester, 2008.
6. The advantage of microreactors in processing hazardous and/or corrosive reagents was described in many recent publications. For selected examples, see (a) Irfan, M.; Glasnov, N. T.; Kappe, O. C. Org. Lett. 2011, 13, 984–987;
(b)Baumann, M.; Baxendale, I. R.; Martin, L. J.; Ley, S. V. Tetrahedron, 2009, 65, 6611–6625;
(c)Ducry, L.; Roberge, D. M. Angew. Chem. Int. Ed. 2005, 44, 7972–7975;
(d)Panke, G.; Schwalbe, T.; Stirner, W.; Taghavi-Moghadam, S.; Wille, G. Synthesis 2003, 2827–2830;
(e)Antes, J.; Boskovic, D.; Krause, H.; Loebbecke, S.; Lutz, N.; Tuercke, T.; Schweikert, W. Chem. Eng. Res. Des. 2003, 81, 760–765.
7. For recent examples of azide chemistry in continuous-flow reactors, see (a) Bogdan, A. R.; Sach, N. W.; Adv. Synth. Catal. 2009, 351, 849–854;
(b)Brandt, J. C.; Wirth, T. Beilstein J. Org. Chem. 2009, 5 (No. 30);
(c)Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N.; Smith, C. D.; Tierney, J. P. Org. Biomol. Chem. 2008, 6, 1577–1586;
(d)Sahoo, H. R.; Kralj, J. G.; Jensen, K. F. Angew. Chem. Int. Ed. 2007, 46, 5704–5708;
(e)see also ref. 2a and ref. 14.
8(a). Roberge, D. M.; Gottsponer, M.; Eyholzer, M.; Kockmann, N. Chem. Today 2009, 27, 8–11;
(b)Kockmann, N.; Roberge, D. M.; Chem. Eng. Technol. 2009, 32, 1682–1694;
(c)Roberge, D. M.; Zimmermann, B.; Rainone, F.; Gottsponer, M.; Eyholzer, M.; Kockmann, N. Org. Process Res. Dev. 2008, 12, 905–910;
(d)Pennemann, H.; Watts, P.; Haswell, S. J.; Hessel, V.; Löwe, H.; Org. Process Res. Dev. 2004, 8, 422–439;
(e)Zhang, X.; Stefanick, S.; Villani, F. J. Org. Process Res. Dev. 2004, 8, 455–460.
9. T. Razzaq C. O. Kappe 2010 Chem. Asian J 5 1274–1289.
10. S. Bräse C. Gil K. Knepper V. Zimmermann 2005 Angew. Chem. Int. Ed 44 5188–5240.
11. For a preliminary report, see Gutmann, B.; Roduit, J.-P.; Roberge, D.; Kappe C. O. Angew. Chem. Int. Ed. 2010, 49, 7101–7105.
12. For a preliminary report, see Gutmann, B.; Roduit, J.-P.; Roberge, D.; Kappe, C. O. Chem. Eur. J. 2011, 17, 13146–13150.
13. HN3 + HNO2 → N2O + N2 + H2O, ref. 2b.
14(a). Smith, C. J.; Nikbin, N.; Ley, S. V.; Lange, H.; Baxendale, I. R. Org. Biomol. Chem. 2011, 9, 1938–1947;
(b)Smith, C. J.; Smith, C. D.; Nikbin, N.; Ley, S. V.; Baxendale, I. R. Org. Biomol. Chem. 2011, 9, 1927–1937.
15. For further details on the FlowSyn reactor, see www.uniqsis.com.
16. T. N. Glasnov C. O. Kappe 2011 Chem. Eur. J 17 11956–11968.
17(a). Herr, R. J. Bioorg. Med. Chem. 2002, 10, 3379–3383;
(b)Myznikov, L. V.; Hrabalek, A.; Koldobskii, G. I. Chem. Heterocycl. Compd. 2007, 43, 1–9.
18(a). Wittenberger, S. J. Org. Prep. Proced. Int. 1994, 26, 499–531;
(b)Butler, R. N. In Comprehensive Heterocyclic Chemistry II Katritzky, A. R., Rees, C.W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 4, p. 621;
(c)Gaponik, P. N.; Voitekhovich, S. V.; Ivashkevich, O. A. Russ. Chem. Rev. 2006, 75, 507–539.
19(a). McManus, J. M.; Herbst, R. M. J. Org. Chem. 1959, 24, 1044–1046;
(b)Mihina, J. S.; Herbst, R. M. J. Org. Chem. 1950, 15, 1082–1092.
20(a). Cantillo, D.; Gutmann, B.; Kappe, C. O. J. Am. Chem. Soc. 2011, 133, 4465–4475;
(b)Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc. 2003, 125, 9983–9987;
(c)Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc. 2002, 124, 12210–12216.
21(a). Schmidt, B.; Meid, D.; Kieser, D. Tetrahedron 2007, 63, 492–496;
(b)Herbst, R. M.; Wilson, K. R. J. Org. Chem. 1957, 22, 1142–1145.
22(a). Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945–7950;
(b)Venkateshwarlu, G.; Premalatha, A.; Rajanna, K. C.; Saiprakash, P. K. Synth. Commun. 2009, 39, 4479–4485.
23(a). Kantam, M. L., Kumar, K. B. S., Raja, K. P. J. Mol. Catal. A, (2006) 247, 186–188;
(b)Kantam, M. L.; Balasubrahmanyam, V.; Kumar, K. B. S. Synth. Commun. 2006, 36, 1809–1814;
(c)Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee S. Tetrahedron Lett. 2009, 50, 4435–4438;
(d)He, J.; Li, B.; Chen, F.; Xu, Z.; Yin, G. J. Mol. Catal. A 2009, 304, 135–138;
(e)Das, B.; Reddy, C. R.; Kumar, D. N.; Krishnaiah, M.; Narender, R. Synlett 2010:391–394.
24(a). Kantam, M. L.; Kumar, K. B. S.; Sridhar, C. Adv. Synth. Catal. 2005, 347, 1212;
(b)Lang, L.; Li, B.; Liu, W.; Jiang, L.; Xu, Z.; Yin, G. Chem. Commun. 2010, 46, 448–450.
25(a). Finnegan, W. G.; Henry, R. A.; Lofquist, R. J. Am. Chem. Soc. 1958, 80, 3908–3911;
(b)Lieber, E.; Enkoji, T. J. Org. Chem. 1961, 26, 4472–4479;
(c)Bernstein, P. R.; Vacek, E. P. Synthesis 1987, 1133–1134;
(d)Koguro, K.; Oga, T.; Mitsui, S.; Orita, R. Synthesis 1998, 910–914;
(e)Jursic, B. S.; LeBlanc, B. W. J. Heterocycl. Chem. 1998, 35, 405–408.
26(a). Huff, B. E.; Staszak, M. A. Tetrahedron Lett. 1993, 34, 8011–8014;
(b)Wittenberger, S. J.; Donner, B. G. J. Org. Chem. 1993, 58, 4139–4141;
(c)Amantini, D.; Belaggia, R.; Fringuelli, F.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2004, 69, 2896–2898;
(d)Bliznets, I. V.; Vasil'ev, A. A.; Shorshnev, S. V.; Stepanov, A. E.; Lukyanov, S. M. Tetrahedron Lett. 2004, 45, 2571–2573;
(e)Jin, T.; Kitahara, F.; Kamijo, S.; Yamamoto, Y. Tetrahedron Lett. 2008, 49, 2824–2827;
(f)Bonnamour, J.; Bolm, C. Chem. Eur. J. 2009, 15, 4543–4545.
27(a). McMurray, J. S.; Khabashesku, O.; Britwistle, J. S.; Wang, W. Tetrahedron Lett. 2000, 41, 6555–6558;
(b)Rival, Y.; Wermuth, C. G. Synth. Commun. 2000, 30, 1587–1591;
(c)Duncia, J. V.; Pierce, M. E.; Santella, J. B. J. Org. Chem. 1991, 56, 2395–2400;
(d)Curran, D. P.; Hadida, S.; Kim, S. -Y. Tetrahedron 1999, 55, 8997–9006.
28(a). Arnold, C.; Thatcher, D. N. J. Org. Chem. 1969, 34, 1141–1142;
(b)Aureggi, V.; Sedelmeier, G. Angew. Chem. Int. Ed. 2007, 46, 8440–8444.
29. M. Treu T. Karner R. Kousek H. Berger M. Mayer D. B. McConnell A. Stadler 2008 J. Comb. Chem 10 863–868.
30. For a review on SiC-based microtiter plates, see (a) Damm, M., Kappe, C. O. Mol. Diversity, (2012) 16. DOI:. doi:10.1007/s11030-011-9346-x;
(b) see also Obermayer, D.; Gutmann, B.; Kappe, C. O. Angew. Chem. Int. Ed. 2009, 48, 8321-8324.
31. A saturated solution of NaN3 in water (417 mg/mL at 17 °C) is ca. 5.2 M; a solution of 1 mmol of the nitrile in 1 mL NMP/AcOH is ca. 0.9 M; see Experimental Section for details.
32. Sulfinert® is a Siltek®-treated stainless-steel coil (i.e., chemical vapor-deposited multilayer silicon coating) that has the advantages of Teflon coatings or glass/fused silica coils without the problems associated with gas permeability and temperature limitations, associated with polymeric coatings such as Teflon, and with far higher flexibility and durability than glass/fused silica coils. The temperature limit of these coils is 600 °C. For further information, see www.restek.com.
33. For the determination of the steady state yields, the post reaction stream was collected in a graduated cylinder.
34. HN3 dissolves some metals (M = Zn, Fe, Mn, and Cu) according to: M + 3 HN3 + H+ → M(N3)2 + N2 + NH4 +; see ref. 2b.
35. Muetterties, E. L.; Evans W. J.; Sauer, J. C. J. Chem. Soc., Chem. Commun. 1974, 939–940.
36. In general, permeation increases with temperature, pressure, and surface area and decreases with increased thickness. For example, the permeability of PFA tubing for O2 at 21 °C is in the order of 10−8 cm3 mm cm−2 s−1 cmHg−1; for details see, for example, Giacobbe, F. W. J. Appl. Polym. Sci. 1990, 39, 1121–1132.
37. B. Gutmann T. N. Glasnov T. Razzaq W. Goessler D. M. Roberge C. O. Kappe 2011 Beilstein J. Org. Chem 7 503–517.
38. P. B. Palde T. F. Jamison 2011 Angew. Chem. Int. Ed 50 3525–3528.
39. J. Magano 2009 Chem. Rev 109 4398–4438.
40. For ring-opening reactions of oxazolines with TMSN3 in the synthesis of sialic acid analogues, see (a) Lu, Y.; Gervay-Hague, J. Carbohydr. Res. 2007, 342, 1636–1650;
(b)Kok, G. B.; Campbell, M.; Mackey, B.; von Itzstein, M. J. Chem. Soc. Perkin Trans. 1 1996, 2811–2815;
(c)Chandler, M.; Bamford, M. J.; Conroy, R.; Lamont, B.; Patel, B.; Patel, V. K.; Steeples, I. P.; Storer, R.; Weir, N. G.; Wright, M.; Williamson, C. J. Chem. Soc. Perkin Trans. 1 1995, 1173–1179;
(d)von Itzstein, M.; Jin, B.; Wu, W. -Y.; Chandler, M. Carbohydr. Res. 1993, 244, 181–185.
41. (a) Oxazoles. Synthesis Reactions, and Spectroscopy; Palmer, D. C., Ed.; The Chemistry of Heterocyclic Compounds, Vol. 60, Part B; John Wiley & Sons: Hoboken, 2004; for general reviews, see
(b)Gant, T. G.; Meyers, A. I. Tetrahedron 1994, 50, 2297–2360;
(c)Frump, J. A. Chem. Rev. 1971, 71, 483–505.
42. For further ring-opening reactions of oxazolines with TMSN3, see (a) Lee, S.-H., Yoon, J., Chung, S.-H., Lee, Y.-S. Tetrahedron, (2001) 57, 2139–2145;
(b)Lee, S.-H.; Yoon, J.; Nakamura, K.; Lee, Y.-S. Org. Lett. 2000, 2, 1243–1246;
(c)Saito, S.; Tamai, H.; Usui, Y.; Inaba, M.; Moriwake. T Chem Lett 1984: 1243–1246.
43. Several strategies for the selective synthesis of monoacylated diamines have been developed; for selected examples, see (a) Verma, S. K.; Acharya, B. N.; Kaushik, M. P. Org. Lett. 2010, 12, 4232–4235;
(b)Fuentes de Arriba, A. L.; Seisdedos, D. G.; Simón, L.; Alcázar, V.; Raposo, C.; Morán, J. R. J. Org. Chem. 2010, 75, 8303–8306;
(c)Zhang, Z.; Yin, Z.; Meanwell, N. A.; Kadow, J. F.; Wang, T. Org. Lett. 2003, 5, 3399–3402;
(d)Jacobson, A. R.; Makris, A. N.; Sayre, L. M. J. Org. Chem. 1987, 52, 2592–2594.
44. HN3 can be detected by a sensitive colorimetric test with a strip of paper impregnated with ferric chloride; see Feigl, F.; Anger V. Spot Tests in Organic Analysis, 7th ed.; Elsevier: Amsterdam, 1975.
45. N. Kockmann 2008 Transport Phenomena in Micro Process Engineering Berlin-Heidelberg Springer.
46. T. C. Wehman A. I. Popov 1966 J. Phys. Chem 70 3688–3693.
47. C. Guis H. Cheradame 2000 Eur. Polym. J 36 2581–2590.
48. R. Srinivasan L. P. Tan H. Wu P. -Y. Yang K. A. Kalesha S. Q. Yao 2009 Org. Biomol. Chem 7 1821–1828.
49. M. Tingoli M. Tiecco L. Testaferri A. Temperini 1994 J. Chem. Soc. Chem. Commun 16 1883–1884.