View More View Less
  • 1 School of Chemical Sciences, Dublin City University, Dublin 9 Dublin, Ireland
  • 2 School of Pharmacy and Molecular Sciences, James Cook University, QLD 4811 Townsville, Australia
Open access

Photooxygenation of 1,5-dihydroxynaphthalene to Juglone was studied in a falling film microreactor. Moderate conversion rates of up to 31% were achieved after just 160 s of exposure to visible light. In contrast, batch reactions gave much lower conversions of up to 14% after a prolonged time period of 10 min. The difference in performance is explained by the superior light penetration in the microfilm and the large gas-liquid contact area.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. For recent reviews, see (a) Oelgemöller, M.; Shvydkiv., O. Molecules 2011, 7, 13131322; (b) Coyle, E. E.; Oelgemöller, M. Photochem. Photobiol. Sci. 2008, 7, 1313–1322; (c) Matsushita, Y.; Ichimura, T.; Ohba, N.; Kumada, S.; Sakeda, K.; Suzuki, T.; Tanibata, H.; Murata, T. Pure Appl. Chem. 2007, 79, 1959–1968.

    • Search Google Scholar
    • Export Citation
  • 2. Braun, A. M.; Maurette., M.; Oliveros., E. Photochemical Technology, Wiley: Chichester, UK, 1991.

  • 3. For selected examples form our and other laboratories, see (a) Shvydkiv, O.; Yavorskyy., A.; Tan., S. B.; Nolan., K.; Hoffmann., N.; Youssef., A.; Oelgemöller., M. Photochem. Photobiol. Sci. 2011, 10, 13991404; (b) Shvydkiv, O.; Nolan, K.; Oelgemöller, M. Beilstein J. Org. Chem. 2011, 7, 1055–1063; (c) Yavorskyy, A.; Shvydkiv, O.; Nolan, K.; Hoffmann, N.; Oelgemöller, M. Tetrahedron Lett. 2011, 52, 278–280; (d) Shvydkiv, O.; Yavorskyy, A.; Nolan, K.; Youssef, A.; Riguet, E.; Hoffmann, N.; Oelgemöller, M. Photochem. Photobiol. Sci. 2010, 9, 1601–1603; (e) Shvydkiv, O.; Gallagher, S.; Nolan, K.; Oelgemöller, M. Org. Lett. 2010, 12, 5170–5173; (f) Fukuyama, T.; Hino, Y.; Kamata, N.; Ryu, I. Chem. Lett. 2004, 33, 1430–1431; (g) Tsutsumi, K.; Terao, K.; Yamaguchi, H.; Yoshimura, S.; Morimoto, T.; Kakiuchi, K.; Fukuyama, T.; Ryu, I. Chem. Lett. 2010, 39, 828–829; (h) Vasudevan, A.; Villamil, C.; Trumbull, J.; Olson, J.; Sutherland, D.; Pan, J.; Djuric, S. Tetrahedron Lett. 2010, 51, 4007–4009; (i) Fuse, S.; Tanabe, N.; Yoshida, M.; Yoshida, H.; Doi, T.; Takahashi, T. Chem. Commun. 2010, 46, 8722–8724.

    • Search Google Scholar
    • Export Citation
  • 4. (a) Lvesque, F.; Seeberger, P. H. Org. Lett. 2011, 13, 50085011; (b) Park, C. P.; Maurya, R. A.; Lee, J. H.; Kim, D.-P. Lab Chip 2011, 11, 1941–1945; (c) Maurya, R. A.; Park, C. P.; Kim, D.-P. Beilstein J. Org. Chem. 2011, 7, 1158–1163; (d) Carofiglio, T.; Donnola, P.; Maggini, M.; Rossetto, M.; Rossi, E. Adv. Synth. Catal. 2008, 350, 2815–2822; (e) Meyer, S.; Tietze, D.; Rau, S.; Schfer, B.; Kreisel, G. J. Photochem. Photobiol. A: Chem. 2007, 186, 248–253; (f) Jhnisch, K.; Dingerdissen, U. Chem. Eng. Technol. 2005, 28, 426–427; (g) Jhnisch, K.; Dingerdissen, U. Chem. Ing. Tech. 2004, 76, 630–632. (h) Wootton, R. C. R.; Fortt, R.; de Mello, A. J. Org. Process Res. Dev. 2002, 6, 187–189.

    • Search Google Scholar
    • Export Citation
  • 5. (a) Clennan, E. L.; Pace, A. Tetrahedron 2005, 61, 66656691; (b) DeRosa, M. C.; Crutchley, R. J. Coord. Chem. Rev. 2002, 233–234, 351–371; (c) Iesce, M. R.; Cermola, F.; Temussi, F. Curr. Org. Chem. 2005, 9, 109–139; (d) Clennan, E. L. Tetrahedron 2000, 56, 9151–9179; (e) Gollnick, K. Chim. Ind. 1982, 64, 156–166; (f) Rojahn, W.; Warnecke, H.-U. Dragoco-Report 1980, 27, 159–164.

    • Search Google Scholar
    • Export Citation
  • 6. (a) Haggiage, E.; Coyle, E. E.; Joyce, K.; Oelgemöller., M. Green Chem. 2009, 11, 318321; (b) Oelgemöller, M.; Healy, N.; de Oliveira, L.; Jung, C.; Mattay, J. Green Chem. 2006, 8, 831–834; (c) Oelgemöller, M.; Jung, C.; Mattay, J. Pure Appl. Chem. 2007, 79, 1939–1947; (d) Suchard, O.; Kane, R.; Roe, B. J.; Zimmerman, E.; Jung, C.; Waske, P. A.; Mattay, J.; Oelgemöller, M. Tetrahedron 2006, 62, 1467–1473; (e) Oelgemöller, M.; Jung, C.; Ortner, J.; Mattay, J.; Zimmermann, E. Green Chem. 2005, 7, 35–38; (f) Yavorskyy, A.; Shvydkiv, O.; Limburg, C.; Nolan, K.; Delaure´, Y.; Oelgemöller, M. Green Chem. 2012, 14, DOI:10.1039/C2GC16439F.

    • Search Google Scholar
    • Export Citation
  • 7. (a) Binder, R. G.; Benson, M. E.; Flath, R. A. Phytochemistry 1989, 28, 27992801; (b) Moir, M.; Thomson, R. H. Phythochemistry 1973, 12, 1351–1353; (c) Ikekawa, T.; Lin Wang, E.; Hamada, M.; Takeuchi, T.; Umezawa, H. Chem. Pharm. Bull. 1967, 15, 242–245; (d) Mylius, F. Ber. Dtsch. Chem. Ges., 1884, 17, 2411–2414.

    • Search Google Scholar
    • Export Citation
  • 8. (a) For (S)-espicufolin, see Tietze, L. F.; Gericke, K. M.; Reddy Singidi, R.; Schuberth, I. Org. Biomol. Chem. 2007, 5, 11911200; (b) for (±)-γindomycinone, see Hsu, D.-S.; Matsumoto, T.; Suzuki, K. Chem. Lett. 2006, 35, 1016–1017; (c) For mensacarcin, see Tietze, L. F.; Gnther, C.; Gericke, K. M.; Schuberth, I.; Bunkoczi, G. Eur. J. Org. Chem. 2005, 2459–2467; (d) for (+)-rubiginone B2, see Motoyoshiya, J.; Masue, Y.; Iwayama, G.; Yoshioka, S.; Nishii, Y.; Aoyama, H. Synthesis 2004, 2099–2102; (e) for aloesaponarin I, see Bingham, S. J.; Tyman, J. H. P. J. Chem. Soc., Perkin Trans. 1 1997, 3637–3642; (f) for (+)-nocardione A, see Clive D. L. J.; Fletcher, S. P.; Liu, D. J. Org. Chem. 2004, 69, 3282–3293; (g) for rac-frenolicin B, see Contant, P.; Haess, M.; Riegl, J.; Scalone, M.; Visnick, M. Synthesis 1999, 821–828; (h) for urdamycinone B, see Matsuo, G.; Miki, Y.; Nakata, M.; Matsumura, S.; Toshima, K. J. Org. Chem. 1999, 64, 7101–7106; (i) for rac-juglomycin A, see Kraus, G. A.; Liu, P. Synth. Commun. 1996, 26, 4501–4506.

    • Search Google Scholar
    • Export Citation
  • 9. (a) Takizawa, S.-y.; Aboshi, R.; Murata, S. Photochem. Photobiol. Sci. 2011, 10, 895903; (b) Oelgemöller, M.; Mattay, J.; Grner, H. J. Phys. Chem. A 2011, 115, 280–285; (c) Murtinho, D.; Pinero, M.; Pereira, M. M.; Rocha Gonsalves, A. M. d'A.; Arnaut, L. G.; da Gra0a Miguel, M.; Burrows, H. D. J. Chem. Soc., Perkin Trans. 2 2000, 2441–2447; (d) Croux, S.; Maurette, M.-T.; Hocquaux, M.; Ananides, A.; Braun, A. M.; Oliveros, E. New J. Chem. 1990, 14, 161–167; (e) Wurm, G.; Geres, U. Arch. Pharm. (Weinheim) 1985, 318, 931–937; (f) Duchstein, H. J.; Wurm, G. Arch. Pharm. (Weinheim) 1984, 317, 809–812; (g) Griffiths, J.; Chu, K. Y.; Hawkins, C. J. Chem. Soc., Chem. Commun. 1976, 676–677.

    • Search Google Scholar
    • Export Citation
  • 10. (a) Steinfeldt, N.; Abdallah, R.; Dingerdissen, U.; Jhnisch, K. Org. Process Res. Dev. 2007, 11, 10251031; (b) Ehrich, H.; Linke, D.; Morgenschweis, K.; Baerns, M.; Jhnisch, K. Chimia 2002, 56, 647–653.

    • Search Google Scholar
    • Export Citation
  • 11. (a) Carney, J. M.; Hammer, R. J.; Hulce, M.; Lomas, C. M.; Miyashiro, D. Tetrahedron Lett. 2011, 52, 352355; (b) Kreisel, G.; Meyer, S.; Tietze, D.; Fidler, T.; Gorges, R.; Kirsch, A.; Schfer, B.; Rau, S. Chem. Ing. Tech. 2007, 79, 153–159; (c) Landgraf, S. Spectrochim. Acta A 2001, 57, 2029–2048.

    • Search Google Scholar
    • Export Citation
  • 12. van Dam, M. H. H.; Corriou., J.-P.; Midoux, N.; Lamine, A.; Roizard, S. C. Chem. Eng. Sci. 1999, 54, 53115318.

  • 13. (a) Henderson, R. K.; Jimnez-Gonzlez, C.; Constable, D. J. C.; Alston, S. R.; Inglis, G. G. A.; Fisher, G.; Sherwood, J.; Binks, S. P.; Curzons, A. D. Green Chem. 2011, 13, 854862; (b) Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry D. A.; Stefaniak, M. Green Chem. 2008, 10, 31–36; (c) Capello, C.; Fischer, U.; Hungerbhler, K. Green Chem. 2007, 9, 927–934.

    • Search Google Scholar
    • Export Citation
  • 14. For a discussion of energy needs in chemical reactions, see Stankiewicz, A. Chem. Eng. Res. Des. 2006, 84, 511521.

  • 15. (a) Zakrzewski, A.; Neckers, D. C. Tetrahedron 1987, 43, 45074512; (b) Neckers, D. C. J. Photochem. Photobiol. A: Chem. 1989, 47, 1–29.

    • Search Google Scholar
    • Export Citation
  • 16. (a) Fukuyama, T.; Kajihara, Y.; Hino, Y.; Ryu, I. J. Flow Chem. 2011, 1, 4045; (b) Sugimoto, A.; Fukuyama, T.; Sumino, Y.; Takagi, M.; Ryu, I. Tetrahedron 2009, 65, 1593–1598.

    • Search Google Scholar
    • Export Citation
  • 17. (a) Yoshida, J. I.; Kim, H.; Nagaki, A. ChemSusChem 2011, 4, 331340; (b) Lerou, J. J.; Tonkovich, A. L.; Silva, L.; Perry, S.; McDaniel, J. Chem. Eng. Sci. 2010, 65, 380–385; (c) Hessel, V.; Kralisch, D.; Krtschil, U. Energy Environ. Sci. 2008, 1, 467–478; (d) Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318.

    • Search Google Scholar
    • Export Citation
  • 18. (a) Ciana, C. L.; Bochet, C. G. Chimia 2007, 61, 650654; (b) Schiel, C.; Oelgemöller, M.; Ortner, J.; Mattay J. Green Chem. 2001, 3, 224–228; (c) Schiel, C.; Oelgemöller, M.; Mattay, J. Synthesis 2001, 1275–1279; (d) Albini, A.; Fagnoni, M.; Mella, M. Pure Appl. Chem. 2000, 72, 1321–1326.

    • Search Google Scholar
    • Export Citation