View More View Less
  • 1 Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
  • 2 School of Pharmacy and Molecular Sciences, James Cook University, Townsville, QLD 4811, Australia
Restricted access

Abstract

The diastereoselective [2+2] photocycloaddition of ethylene to a chiral cyclohexenone was studied in a continuous flow microcapillary reactor. In all cases examined, the microcapillary reactor gave higher conversions and selectivity than the batch system, even after shorter irradiation times. These findings were explained by the superior temperature control, favorable light penetration, and generation of a gas–liquid slug flow with improved mass transfer in the microreactor.

  • 1. C.-L. Ciana C. G. Bochet 2007 Chimia 61 650.

  • 2. M. Oelgemöller N. Healy L. de Oliveira C. Jung J. Mattay 2006 Green Chem. 8 831.

  • 3. N. Hoffmann 2008 Chem. Rev. 108 1052.

  • 4. T. Bach J. P. Hehn 2011 Angew. Chem. Int. Ed. 50 1000.

  • 5. E. Lee-Ruff G. Mladenova 2003 Chem. Rev. 103 1449.

  • 6. Dell, C. P. J. Chem. Soc., Perkin Trans. 1 1998, 3873.

  • 7. J. C. Namyslo D. E. Kaufmann 2003 Chem. Rev. 103 1485.

  • 8. Y. Shimada M. Nakamura T. Suzuka J. Matsui R. Tatsumi K. Tsutsumi T. Morimoto H. Kurosawa K. Kakiuchi 2003 Tetrahedron Lett. 44 1301.

    • Search Google Scholar
    • Export Citation
  • 9. J. D. Winkler C. M. Bowen F. Liotta 1995 Chem. Rev. 95 2003.

  • 10. M. T. Crimmins 1988 Chem. Rev. 88 1453.

  • 11. Oelgemöller, M. Chem. Eng. Technol. 2012, 35, DOI: 10.1002/ceat.201200009.

  • 12. M. Oelgemöller O. Shvydkiv 2011 Molecules 16 7522.

  • 13. E. E. Coyle M. Oelgemöller 2008 Photochem. Photobiol. Sci. 7 1313.

  • 14. T. Fukuyama Y. Kajihara Y. Hino I. Ryu 2011 J. Flow Chem. 1 40.

  • 15. O. Shvydkiv A. Yavorskyy S. B. Tan K. Nolan N. Hoffmann A. Youssef M. Oelgemöller 2011 Photochem. Photobiol. Sci. 10 1399.

  • 16. K. Sakeda K. Wakabayashi Y. Matsushita T. Ichimura T. Suzuki T. Wada Y. Inoue 2007 J. Photochem. Photobiol. A: Chem. 192 166.

  • 17. H. Maeda H. Mukae K. Mizuno 2005 Chem. Lett. 34 66.

  • 18. K. Tsutsumi Y. Yanagisawa A. Furutani T. Morimoto K. Kakiuchi T. Wada T. Mori Y. Inoue 2010 Chem. Eur. J. 16 7448.

  • 19. K Tsutsumi K Terao H Yamaguchi S Yoshimura T Morimoto K Kakiuchi T Fukuyama I Ryu 2010 Chem Lett 39 8 828.

  • 20. T Horie M Sumino T Tanaka Y Matsushita T Ichimura JI Yoshida 2010 Org Proc Res Devel 14 405.

  • 21. AC Gutierrez TF Jamison 2011 Org Lett 13 6414.

  • 22. A Yavorskyy O Shvydkiv K Nolan N Hoffmann M Oelgemöller 2010 Tetrahedron Lett 52 278.

  • 23. BDA Hook W Dohle PR Hirst M Pickworth MB Berry KI Booker-Milburn 2005 J Org Chem 70 7558.

  • 24. F Lévesque PH Seeberger 2012 Angew Chem Int Ed 51 1706.

  • 25. L Chen YS Tia TG Karayiannis 2006 Int J Heat Mass Transfer 49 4220.

  • 26. A Yavorskyy O Shvydkiv C Limburg K Nolan YMC Delauré M Oelgemöller 2012 Green Chem 14 888.

  • 27. L Liang-sun S Ruey-fu O Hsin-jung L Tien-san 2003 Ind Eng Chem Res 42 6977.

  • 28. K Rupak P Sudhakar RS Krishna P Viral S Shashikant AP Parimal 2011 J Appl Poly Sci 122 2646.

  • 29. A Sugimoto T Fukuyama Y Sumino M Takagi I Ryu 2009 Tetrahedron 65 1593.

  • 30. A Vasudevan C Villamil J Trumbull J Olson D Sutherland J Pan S Djuric 2010 Tetrahedron Lett 51 4007.

  • 31. M Nettekoven B Püllmann RE Martin D Wechsler 2012 Tetrahedron Lett 53 1363.