View More View Less
  • 1 Johannes Gutenberg-University Mainz, Carl-Duesbergweg 10-14, 55128, Mainz, Germany
  • 2 IMM Institut fuer Mikrotechnik Mainz GmbH, Carl Zeiss Str. 18-20, 55129, Mainz, Germany
  • 3 Ludwigs Maximilian-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
Restricted access

Abstract

MUC1-type glycopeptides have already shown their potential as possible cancer vaccine candidates. In addition, first examples of fluorinated antigen structures, especially containing the Thomsen–Friedenreich antigen, with similar antibody recognition have been reported. Using microreactor techniques for improvement of the crucial step, the complex glycosylation reactions, is an efficient way to find optimized reaction parameter as well as to circumvent well-known scale-up drawbacks. Besides, this is the first report of continuous flow glycosylations of glycosyl amino acids, in particular with fluorinated glycosyl building blocks.

  • 1. GF Springer 1984 T and Tn, general carcinoma autoantigens Science 224 1198 1206.

  • 2. J Taylor-Papadimitriou J Burchell DW Miles M Dalziel 1999 Biochim. Biophys. Acta 1455 301.

  • 3. Burchell, J. M.; Mungul, A.; Taylor-Papadimitriou, J. J. Mammary Gland. Biol. Neoplasia 2001, 6 (3), 355.

  • 4. FG Hanisch S Müller 2000 Glycobiology 10 5 439.

  • 5. S Dziadek A Hobel E Schmitt H Kunz 2005 Angew. Chem. Int. Ed. 44 46 7630.

  • 6. U Westerlind A Hobel N Gaidzik E Schmitt H Kunz 2008 Angew. Chem. Int. Ed. 47 39 7551.

  • 7. A Kaiser N Gaidznik U Westerlind D Kowalczyk A Hobel E Schmitt H Kunz 2009 Angew. Chem. Int. Ed. 48 41 7551.

  • 8. A Kaiser N Gaidzik T Becker C Menge K Groh H Cai YM Li B Gerlitzki E Schmitt H Kunz 2019 Angew. Chem. Int. Ed. 49 21 3688.

  • 9. V Lakshminarayanan P Thompson MA Wolfert T Buskas JM Bradley LB Pathangey CS Madsen PA Cohen SJ Gendler GJ Boons 2012 PNAS 109 1 261.

    • Search Google Scholar
    • Export Citation
  • 10. H Cai Z-H Huang S Lei Z-Y Sun Y-F Zhao H Kunz Y-M Li 2012 Angew. Chem. Int. Ed. 51 7 1719.

  • 11. BL Wilkinson S Day LR Malins V Apostolopoulos R Payne 2011 Angew. Chem. Int. Ed. 50 7 1635.

  • 12. MA Tarp AL Sorensen U Mandel H Paulsen J Burchell J Taylor-Papadimitriou H Clausen 2007 Glycobiology 17 2 197.

  • 13. I Brockhausen J Yang J Burchell C Whitehouse J Taylor-Papadimitriou 1995 Eur. J. Biochem. 233 607.

  • 14. FG Hanisch TRE Stadie F Deutermann J Peter-Katalinic 1996 Eur. J. Biochem. 236 381.

  • 15. V Whitehouse J Burchell S Gschmeissner I Brockhausen KO Lloyd J Taylor-Papadimitriou 1997 J. Cell Biol. 137 6 1229.

  • 16. E Bousquet A Spadaro MS Pappalardo R Bernadini R Romeo L Panza GJ Ronsisvalle 2000 J. Carbohydr. Chem. 19 4–5 527.

  • 17. Urban, D.; Skrydstrup, T.; Beau, J.-M. Chem. Commun. 1998, 955.

  • 18. CH Röhrig M Takhi RR Schmidt 2001 Synlett 7 1170.

  • 19. L Cipolla M Rescigno A Leone F Peri B La Ferla F Nicotra 2002 Bioorg. Med. Chem. 10 5 1639.

  • 20. B Kuberan SA Sikkander H Tomiyama RJ Linhardt 2003 Angew. Chem. Int. Ed. 42 18 2073.

  • 21. J Wu Z Guo 2006 Bioconjugate Chem. 17 1537.

  • 22. Q Wang Z Guo 2011 Med. Chem. Lett. 2 373.

  • 23. C Mersch S Wagner A Hoffmann-Röder 2009 Synlett 13 2167.

  • 24. J Xue V Kumar SD Khaja EV Chandrasekaran RD Locke KL Matta 2009 Tetrahedron 65 40 8325.

  • 25. S Wagner C Mersch A Hoffmann-Röder 2010 Chem. Eur. J. 16 7319.

  • 26. M Johannes T Oberbillig A Hoffmann-Röder 2011 Org. Biomol. Chem. 9 5541.

  • 27. A Hoffmann-Röder M Johannes 2011 Chem. Comm. 47 9903.

  • 28. T Oberbillig C Mersch S Wagner A Hoffmann-Röder 2012 Chem. Comm. 48 1487.

  • 29. A Hoffmann-Röder A Kaiser S Wagner N Gaidzik D Kowalczyk U Westerlind B Gerlitzki E Schmitt H Kunz 2010 Angew. Chem. Int. Ed. 49 8498.

    • Search Google Scholar
    • Export Citation
  • 30. DM Ratner ER Murphy M Jhunjhunwala DA Snyder FK Jensen PH Seeberger 2005 Chem. Comm. 5 578.

  • 31. K Geyer PH Seeberger 2007 Helv. Chim. Acta 90 395.

  • 32. NV Ganesh K Fujikawa YH Tan KJ Stine AV Demchenko 2012 Org. Lett. 14 12 3036.

  • 33. K Saito K Ueoka K Matsumoto S Suga T Nokami J Yoshida 2011 Angew. Chem. Int. Ed. 50 22 5153.

  • 34. K Tanaka K Fukase J Beilstein 2009 Org. Chem. 5 40.

  • 35. K Tanaka Y Mori KJ Fukase 2009 Carbohydr. Chem. 28 1 1.

  • 36. H Kawakami K Goto M Mamoru 2009 Chem. Lett. 38 9 906.

  • 37. FR Carrel K Geyer JDC Codée PH Seeberger 2007 Org. Lett. 9 12 2285.

  • 38. J Rademann RR Schmidt 1995 Carbohydr. Res. 269 2 217.

  • 39. H Paulsen J-P Hölck 1982 Carbohyd. Res. 109 89.

  • 40. B Liebe H Kunz 1997 Angew. Chem. Int. Ed. 36 6 618.

  • 41. C Brocke H Kunz 2004 Synthesis 4 525.

  • 42. L Barbieri V Costantino E Fattorusso A Mangoni N Basilico M Mondani D Taramelli 2005 Eur. J. Org. Chem. 15 3279.