A continuous-flow approach to the direct synthesis of arene chromium tricarbonyl complexes is presented. By working in flow mode, it is possible to avoid some of the problems of batch synthesis, especially sublimation of the Cr(CO)6 starting material and the competitive decomposition of the product during the lengthy reaction times. Heating at 220 °C and operating with a residence time of 10 min through the heated zone allows for the synthesis of (η6-C6H5CH3)Cr(CO)3 as an example, along with a selection of other (arene)Cr(CO)3 complexes.
1. For a recent review, see: Rosillo, M.; Domínguez, G.; Pérez-Castells, J. Chem. Soc. Rev. 2007, 36, 1589–1604.
2. For an excellent collection of examples, see: Transition Metal Arene π-Complexes in Organic Synthesis and Catalysis (Topics in Organometallic Chemistry 7), Kündig, E. P., Ed.; Springer: Berlin, 2004.
3. For a review, see: Kündig, E. P. Top. Organomet. Chem.2004, 7, 3–20.
4. For a general procedure, see: Mahaffy, C. A. L.; Pauson, P. L. Inorg. Synth. 1990, 28, 136–140.
5. D Horstermann H-G Schmalz G Kociok-Kohn 1999 Tetrahedron 55 6905–6916.
6. M Hudecek S Toma 1991 J. Organomet. Chem. 406 147–151.
7. GBM Kostermans M Bobeldijk PJ Kwakman WH De Wolf F Bickelhaupt 1989 J. Organomet. Chem. 363 291–296.
8. See for example: Kündig, E. P.; Perret, C.; Spichiger, S.; Bernardinelli, G. J. Organomet. Chem. 1985, 286, 183–200.
9. See for example: (a) Goti, A.; Semmelhack, M. F. J. Organomet. Chem. 1994, 470, C4–C7;
(b)Öfele, K. Dotzauer, E. J. Organomet. Chem. 1971, 30, 211–220;
(c)Tweddell, J.; Hoic, D. A.; Fu, G. C. J. Org. Chem. 1997, 62, 8286–8287.
10. M Ardon G Hogarth DTW Oscroft 2004 J. Organomet. Chem. 689 2429–2435.
11. YT Lee SY Choi SI Lee YK Chung TJ Kang 2006 Tetrahedron Lett. 47 6569–6572.
12. See for example: Kaiser, N. F. K., Hallberg, A., Larhed, M. J. Comb. Chem. 2002, 4, 109–111;
(b)Wannberg. J.; Larhed, M. J. Org. Chem., 2003, 68, 5750–5753;
(c)Georgsson, J.; Hallberg, A.; Larhed, M. J. Comb. Chem., 2003, 5, 350–352;
(d)Herrero, M. A.; Wannberg, J.; Larhed, M. Synlett 2004, 2335–2338.
13. For books on the subject, see: (a) Wiles, C.; Watts, P. Micro Reaction Technology in Organic Synthesis; CRC Press: Boca Raton, 2011;
(b)Luis, S. V.; Garcia-Verdugo, E., Eds. Chemical Reactions and Processes under Flow Conditions; Royal Society of Chemistry: Cambridge, 2010.
14. For recent reviews, see: (a) Wiles, C.; Watts, P. Chem. Comm. 2011, 47, 6512–6535;
(b)Wegner, J.; Ceylan, S.; Kirschning, A. Chem. Comm. 2011, 47, 4583–4592;
(c)Razzaq, T.; Kappe, C. O. Chem. Asian J. 2010, 5, 1274–1289;
(d)Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R. Chem. Soc. Rev. 2010, 39, 1153–1182.
15. See for example: Cantillo, D.; Sheibani, H.; Kappe C. O. J. Org. Chem. 2012, 77, 2463–2473.
16. B Deubzer EO Fischer HP Fritz CG Kreiter N Kriebitzsch HD Simmons BR Willeford 1967 Chem. Ber. 100 3084–3096.
17. http://www.vapourtec.co.uk.
18. J-P Djukic F Rose-Munch E Rose F Simon Y Dromzee 1995 Organometallics 14 2027–2038.
19. Jackson, W. R.; Jennings, W. B.; Rennison, S. C.; Spratt, R. J. Chem. Soc. B 1969, 1214–1221.
20. GR Clark MR Metzler G Whitaker PD Woodgate 1996 J. Organomet. Chem. 513 109–134.