View More View Less
  • 1 Institute of Organic Chemistry and Center of Biomolecular Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1b, 30167, Hannover, Germany
Restricted access

Abstract

The coupling of tosylhydrazones derived from aldehydes or ketones with aryl boronic acids to yield the corresponding arylation products that was first developed in the group of Barluenga was achieved in a two-step flow protocol. Starting from the respective carbonyl compounds, tosylhydrazones were formed in the first flow step. These were directly transferred into the second reactor to be coupled with boronic acids. Remarkably, carbenes are postulated to be the highly reactive intermediates of this reaction. Both steps required heating which was managed by electromagnetic induction of a fixed bed material based on steel beads. A continuously conducted two-step flow processes over a period of almost 2 days gave the arylation product in 84% yield.

  • 1. J. Barluenga G. Lonzi L. Riesgo M. Tomás L. A. López 2011 J. Am. Chem. Soc. 133 1813818141.

  • 2. Bamford, W. R.; Stevens, T. S. J. Chem. Soc. 1952, 47354740.

  • 3. J. Barluenga M. Tomás-Gamasa F. Aznar C. Valdés 2009 Nature Chem. 1 494499.

  • 4. Recent reviews on flow chemistry: (a) Wegner, J.; Ceylan, S.; Kirschning, A. Adv. Synth. Catal. 2012, 354, 1757;

    (b) Wegner, J.; Ceylan, S.; Kirschning, A. Chem. Commun. 2011, 47, 45834592;

    (c) McMullen, J. P.; Jensen, K. F. Annu. Rev. Anal. Chem. 2010, 3, 1942;

    (d) Yoshida, J.; Kim, H.; Nagaki, A. ChemSusChem 2011, 4, 331340.

    (e) Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675680;

    (f) Marre, S.; Jensen, K. F. Chem. Soc. Rev. 2010, 39, 11831202;

    (g) Illg, T.; Löb P.; Hessel, V. Bioorg. Med. Chem. 2010, 18, 37073719;

    (h) Yoshida, J.-i. Chem. Rec. 2010, 10, 332341;

    (i) Frost, C. G.; Mutton, L. Green Chem. 2010, 12, 16871703;

    (j) Razzaq, T.; Kappe, C. O. Chem. Asian J. 2010, 5, 12741289.

  • 5. A. Kirschning W. Solodenko K. Mennecke 2006 Chem. Eur. J. 12 59725990.

  • 6. For a review on the theory as well as application of inductive heating in material science, medicine and synthesis see: Kirschning, A.; Kupracz, L.; Hartwig, J. Chem. Lett. 2012, 41, 562570.

    • Search Google Scholar
    • Export Citation
  • 7. An interesting alternative heating concept for flow devices was recently disclosed by Kunz, U.; Turek, T. Beilstein J. Org. Chem. 2009, 5, 70.

    • Search Google Scholar
    • Export Citation
  • 8. (a) Kupracz, L.; Hartwig, J.; Wegner, J.; Ceylan, S.; Kirschning, A. Beilstein J. Org. Chem. 2011, 7, 1441–1448;

    (b) Ceylan, S.; Coutable, L.; Wegner, J.; Kirschning, A. Chem. Eur. J. 2011, 17, 18841893;

    (c) Kirschning, A.; Friese, C.; Ceylan, S.; Wegner, J. Eur. J. Org. Chem. 2010, 43724375;

    (d) S. Ceylan, S.; T. Klande, T.; Vogt, C.; Friese, C.; Kirschning, A. Synlett 2010, 20092013;

    (e) Ceylan, S.; Friese, C.; Lammel, Ch.; Mazac, K.; Kirschning, A. Angew. Chem. 2008, 120, 90839086; Angew. Chem. Int. Ed. 2008, 47, 89508953.

    • Search Google Scholar
    • Export Citation
  • 9. (a) Usutani, H.; Tomida, Y.; Nagaki, A.; Okamoto H.; Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2007, 129, 30463047;

    (b) Nagaki, A.; Takabayashi, N.; Tomida, Y.; Yoshida, J. Org. Lett. 2008, 18, 39373940;

    (c) Nagaki, A.; Takabayashi, N.; Tomida, Y.; Yoshida, J. Beilstein J. Org. Chem. 2009, 5;

    (d)Nagaki A.; Kim, H.; Yoshida, J. Angew. Chem. 2009, 121, 82078209; Angew. Chem. Int. Ed. 2009, 48, 80638065;

    (e) Nagaki, A.; Matsuo, C.; Kim, S.; Saito, K; Miyazaki, A.; Yoshida, J. Angew. Chem. 2012, 124, 32993302; Angew. Chem. Int. Ed. 2012, 51, 32453248.

    • Search Google Scholar
    • Export Citation
  • 10. Fulton, J. R.; Aggarwal, V. K.; Vicente, J. de. Eur. J. Org. Chem. 2005, 1479–1492.

  • 11. J. Gao J.-Q. Wang Q.-W. Song L.-N. He 2011 Green Chem. 13 11821186.

  • 12. Duan, H.; Meng, L.; Bao, D.; Zhang, H.; Li, Y.; Lei, A. Angew. Chem. Int. Ed. 2010, 49, 63876390; Duan, H.; Meng, L.; Bao, D.; Zhang, H.; Li, Y.; Lei, A. Angew. Chem. 2010, 122, 65316534.

    • Search Google Scholar
    • Export Citation
  • 13. C.-M. Chu W.-J. Huang J.-T. Liu C.-F. Yao 2007 Tetrahedron Letters 48 68816885.

  • 14. G. Cahiez C. Chaboche C. Duplais A. Moyeux 2008 Org. Lett. 11 277280.

  • 15. G. Sun Z. Wang 2008 Tetrahedron Lett. 49 49294932.

  • 16. M. J. Burns I. J. S. Fairlamb A. R. Kapdi P. Sehnal R. J. K. Taylor 2007 Org. Lett. 9 53975400.

  • 17. S. Torii H. Tanaka M. Taniguchi Y. Kameyama M. Sasaoka T. Shiroi R. Kikuchi I. Kawahara A. Shimabayashi S. Nagao 1991 J. Org. Chem. 56 36333637.

    • Search Google Scholar
    • Export Citation
  • 18. K. Yoshida R. Narui T. Imamoto 2008 Chem. Eur. J. 14 97069713.

  • 19. S. Podder S. Roy 2007 Tetrahedron 63 91469152.

  • 20. N. Arnau M. Moreno-Manas R. Pleixats 1993 Tetrahedron 49 1101911028.

  • 21. G.-W. Wang T. Miao 2011 Chem. Eur. J. 17 57875790.

  • 22. L. Wang W. Lu 2009 Org. Lett. 11 10791082.