View More View Less
  • 1 Groupe d'Intensification et d'Intégration des Procédés Polymères (G2IP), Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES) - UMR 7515 CNRS, École Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg (UdS), 25 rue Becquerel, F-67087 Strasbourg, France
  • 2 Equipe de Pharmacie Biogalénique, Laboratoire de Conception et Application de Molécules Bioactives - CNRS 7199, Faculté de Pharmacie, Université de Strasbourg (UdS), 74 route du Rhin, BP 60024, F-67401, Illkirch Cedex, France
  • 3 College of Pharmacy, Government College University, Faisalabad, Pakistan
  • 4 Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS - Université de Strasbourg, 23 rue du Loess, BP 43, F-67034 Strasbourg, France
  • 5 Centre National de la Recherche Scientifique, Institut Charles Sadron (ICS), UPR 22, 23 rue Loess, F-67083, Strasbourg, France
  • 6 Institute of Organic Chemistry, and Excellence Graduate School MAINZ, University of Mainz, Duesbergweg 10-14, D-55099, Mainz, Germany
  • 7 Department of Physical Chemistry and Microreaction Technology, Institute of Physics, Technical University of Ilmenau, Weimarer Straße 32, D-98684, Ilmenau, Germany
Restricted access

Abstract

Capillary-based flow-focusing and co-flow microsystems were developed to produce sphere-like polymer microparticles of adjustable sizes in the range of 50 to 600 μm with a narrow size distribution (CV < 5%) and different morphologies (core-shell, janus, and capsules). Rod-like particles whose length was conveniently adjusted between 400 μm and few millimeters were also produced using the same microsystems. Influence of operating conditions (flow rate of the different fluid, microsystem characteristic dimensions, and design) as well as material parameters (viscosity of the different fluids and surface tension) was investigated. Empirical relationships were thus derived from experimental data to predict the microparticle's overall size, shell thickness, or rods length. Besides morphology, microparticles with various compositions were synthesized and their potential applications highlighted: drug-loaded microparticles for new drug delivery strategies, composed inorganic-organic multiscale microparticles for sensorics, and liquid crystalline elastomer microparticles showing an anisotropic reversible shape change upon temperature for thermal actuators or artificial muscles.

  • 1. G. F. Christopher S. L. Anna 2007 J. Phys. D: Appl. Phys. 40 R319R336.

  • 2. Serra, C. Handbook of Micro Process Engineering, Wiley-VCH: Weinheim, 2009.

  • 3. C. A. Serra Z. Chang 2008 Chem. Eng. Technol. 31 8 10991115.

  • 4. V. Hessel C. Serra H. Löwe G. Hadziioannou 2005 Chem. Ing. Tech. 77 16931714.

  • 5. J. L. Steinbacher D. T. McQuade 2006 J. Polym. Sci., Part A: Polym. Chem. 44 65056533.

  • 6. Malloggi, F.; Pannacci, N.; Attia, R.; Monti, F.; Mary, P.; Willaime, H.; Tabeling, P.; Cabane, B.; Poncet, P. Langmuir 2010, 26 (4), 2369.

    • Search Google Scholar
    • Export Citation
  • 7. Hennequin, Y.; Pannacci, N.; Pulido de Torres, C.; Tetradis-Meris, G.; Chapuliot, S.; Bouchaud, E.; Tabeling, P. Langmuir 2009, 25 (14), 78577861.

    • Search Google Scholar
    • Export Citation
  • 8. P. Tabeling 2010 Phys. Fluids 22 21302.

  • 9. Z. Nie W. Li M. Seo S. Xu E. Kumacheva 2006 J. Am. Chem. Soc. 128 94089412.

  • 10. T. Nisisako T. Torii T. Higuchi 2004 Chem. Eng. J. 101 2329.

  • 11. T. Nisisako T. Torii T. Takahashi Y. Takizawa 2006 Adv. Mater. 18 11521156.

  • 12. R. F. Shepherd J. C. Conrad S. K. Rhodes D. R. Link M. Marquez D. A. Weitz J. A. Lewis 2006 Langmuir 22 86188622.

  • 13. Kim, J. W.; Utada, A. S.; Fernández-Nieves, A.; Hu, Z.; Weitz, D. A. Angew. Chem., Int. Ed. 2007, 46, 18191822.

  • 14. Xu, S. Q.; Nie, Z.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H. A.; Garstecki, P.; Weibel, D. B.; Gitlin, I.; Whitesides, G. M. Angew. Chem., Int. Ed. 2005, 44, 724728.

    • Search Google Scholar
    • Export Citation
  • 15. P. C. Lewis R. R. Graham Z. Nie S. Xu M. Seo E. Kumacheva 2005 Macrolecules 38 45364538.

  • 16. D. Dendukuri K. Tsoi T. A. Hatton P. S. Doyle 2005 Langmuir 21 21132116.

  • 17. Seo, M.; Nie, Z.; Xu, S.; Lewis, P. C.; Kumacheva, E. Langmuir 2005, 21, 47734775.

  • 18. Z. Nie S. Xu M. Seo P. C. Lewis E. Kumacheva 2005 J. Am. Chem. Soc. 127 80588063.

  • 19. J. A. Champion Y. K. Katare S. Mitragotri 2007 Proc. Natl. Acad. Sci. U.S.A. 104 29 1190111904.

  • 20. Z. Chang C. Serra M. Bouquey L. Prat G. Hadziioannou 2009 Lab. Chip. 9 30073011.

  • 21. C. Serra N. Berton M. Bouquey L. Prat G Hadziioannou 2007 Langmuir 23 14 77457750.

  • 22. C. Ohm C. Serra R. Zentel 2009 Adv. Mater. 21 48594862.

  • 23. C. Ohm C. Serra I. Kraus R. Zentel 2010 Adv. Funct. Mater. 20 43144322.

  • 24. Chang, Z.; Serra, C. A.; Bouquey, M.; Kraus, I.; Li, S.; Köhler, J. M. Nanotechnology 2010, 21 (1), 015605.

  • 25. Knauer, A.; Csáki, A.; Fritzsche, W.; Serra, C. A.; Leclerc, N.; Köhler, J. M. Chem. Eng. J. 2013, 227, 191197.

  • 26. J. M. Koehler A. Maerz J. Popp A. Knauer I. Kraus J. Faerber C. Serra 2013 Anal. Chem. 85 1 313318.

  • 27. I. U. Ikram C. A. Serra N. Anton T. Vandamme 2013 Int. J. Pharm. 441 1 809817.