View More View Less
  • 1 CNRS, UPR 15, Laboratoire Interfaces et Systèmes Electrochimiques, (LISE, case courrier 133), 4 Place Jussieu, F-75005, Paris, France
  • 2 UPMC Université Paris 06, UPR 15, Laboratoire Interfaces et Systèmes Electrochimiques, (LISE), 4 Place Jussieu, F-75005, Paris, France
  • 3 Laboratoire de Technologie des Matériaux et de Génie des Procédés (LTMGP), Equipe Electrochimie et Corrosion, Faculté de Technologie, Université A. MIRA - Béjaïa, (06000), Algérie
Restricted access

Abstract

The present work describes new results using a contact free impedance device, which permits to reach a best understanding of the free contact transduction. Measurements were carried out through a polyethylene terephthalate (PET) microchannel photoablated. Impedance measurement of empty microchannel at different PET thickness separating the two electrodes demonstrate that the recorded impedance is not changed whatever the PET thickness. The result shows that the polyethylene (PE) film lamination has an effect on the impedance measurement in empty microchannel. Then impedances diagrams in the filled microchannel were plotted by subtracting impedance contribution in empty microchannel from the global microdevice response. The Nyquist diagram of filled microchannel exhibits a loop diameter from high to medium frequencies, and a capacitive behavior at low frequencies. The loop diameter obtained is inversely proportional to the microchannel conductivity. Modeling impedance of microsystem highlighted the effect of microchannel rough surface phenomena.

  • 1. Rossier, J. S.; Schwarz, A.; Reymond, F.; Ferrigno, R.; Bianchi, F.; Girault, H. H. Electrophoresis 1999, 20, 2773.

  • 2. Yakovleva, J.; Davidsson, R.; Lobanova, A.; Bengtsson, M.; Eremin, S.; Laurell, T.; Emneus, J. Anal. Chem. 2002, 74, 29943004.

  • 3. Martin, R. S.; Ratzlaff, K. L.; Huynh, B. H.; Lunte, S. M. Anal. Chem. 2002, 74, 11361143.

  • 4. Gamby, J.; Abid, J.-P; Girault, H. H. J. Am. Chem. Soc. 2005, 127, 1330013304.

  • 5. Kjeang, E.; Roesch, B.; McKechnie, J.; Harrington, D. A.; Djilali, N.; Sinton, D. Microfluid Nanofluid 2007, 3, 403416.

  • 6. Ordeig, O.; Godino, N.; Del Campo, J.; Muñoz, F. X.; Nikolajeff, R.; Nyholm, L. Anal. Chem. 2008, 80, 36223632.

  • 7. Gamby, J.; Abid, J.-P; Tribollet, B.; Girault, H. H. Small 2008, 4, 802809.

  • 8. Dittami, G. M.; Ayliffe, H. E.; King, C. S.; Rabbitt, R. D. J. MEMS 2008, 17, 850862.

  • 9. Sun, T.; Swindle, E. J.; Collins, J. E.; Holloway, J. A; Davies, D. E; Morgan, H. Lab chip 2010, 10, 16111616.

  • 10. Jagtiani, A. V.; Zhe, J. Micro and Nanosystems 2010, 2, 298308.

  • 11. De Levie, R. Advances in Electrochemistry and Electrochemical Engineering; Delahay, P., Ed.; Interscience, John Wiley and Sons: New York, 1967; Vol. 6, 329.

    • Search Google Scholar
    • Export Citation
  • 12. Barcia, O. E.; D'Elia, E.; Frateur, I.; Mattos, O. R.; Pébère, N.; Tribollet, B. Electrochim. Acta. 2002, 47, 21092116.

  • 13. Candy, J. P.; Fouilloux, P.; Keddam, M.; Takenouti, H. Electrochim. Acta. 1981, 26, 10291934.

  • 14. Fievet, P.; Mullet, M.; Pagetti, J. J. Membr. Sci. 1998, 149, 143150.