A solvothermal continuous-flow method for the scalable and shape tunable synthesis of rod-like/spherical TiO2 nanocrystals (NCs) has been developed. The as-prepared colloidal NCs show photocatalytic activity in an addition–cyclization cascade under continuous-flow conditions.
1. For two recent reviews, see: (a) Chen, H.; Nanayakkara, C. E.; Grassian, V. H. Chem. Rev. 2012, 112, 5919;
(b)Nakataa, K.; Fujishima, A. J. Photochem. Photobiol. C 2012, 13, 169.
2. (a) Wu, X.; Chen, Z.; Lu, G. Q.; Wang, L. Adv. Funct. Mater. 2011, 21, 4167;
(b)Hsiao, P.-T.; Tung, Y.-L.; Teng, H. J. Phys. Chem. C 2010, 114, 6762.
3. J. Karch R. Birringer H. Gleiter 1987 Nature 330 556.
4. (a) Epifani, M.; Andreu, T.; Zamani, R.; Arbiol, J.; Comini, E.; Siciliano, P.; Faglia, G.; Morante, J. R. CrystEngComm 2012, 14, 3882;
(b)Aluri, G. S.; Motayed, A.; Davydov, A. V.; Oleshko, V. P.; Bertness, K. A.; Sanford, N. A.; Mulpuri, R. V. Nanotechnology 2012, 23, 175501.
5. (a) Cao, X.; Jing, W.; Xing, W.; Fan, Y.; Kong, Y.; Dong, J. Chem. Commun. 2011, 47, 3457;
(b)Chevallier, L.; Bauer, A.; Cavaliere, S.; Hui, R.; Roziere, J.; Jones, D. J. ACS Appl. Mater. Interfaces 2012, 4, 1752.
6. T. A. Kandiel L. Robben A. Alkaim D. Bahnemann 2013 Photochem. Photobiol. Sci. 12 602.
7. W. Q. Fang X. Q. Gong H. G. Yang 2011 J. Phys. Chem. Lett. 2 725.
8. For reviews , see: (a) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891;
(b)Gupta, S. M.; Tripathi, M. Cent. Eur. J. Chem. 2012, 10, 279.
9. For some pioneering studies, see: (a) Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. J. Am. Chem. Soc. 1999, 121, 1613;
(b)Niederberger, M.; Bartl, M. H.; Stucky, G. D. Chem. Mater. 2002, 14, 4364;
(c)Cozzoli, P. D.; Kornowski, A.; Weller, H. J. Am. Chem. Soc. 2003, 125, 14539;
(d)Jun, Y. M.; Casula, M. F.; Sim, J. H.; Kim, S. Y.; Cheon, J. W.; Alivisatos, A. P. J. Am. Chem. Soc. 2003, 125, 15981;
(e)Niederberger, M.; Garnweitner, G.; Pinna, N.; Antonietti, M. J. Am. Chem. Soc. 2004, 126, 9120.
10. For some recent reviews, see: (a) Song, Y.; Hormes, J.; Kumar, C. S. S. R. Small 2008, 4, 698;
(b)Marre, S.; Jensen, K. F. Chem. Soc. Rev. 2010, 39, 1183;
(c)Zhao, C.-X.; He, L. E.; Qiao, S. Z.; Middelberg, A. P. Chem. Eng. Sci. 2011, 66, 1463;
(d)Pumera, M. Chem. Commun. 2011, 47, 5671.
11. (a) Takagi, M.; Maki, T.; Miyahara, M.; Mae, K. Chem. Eng. J. 2004, 101, 269;
(b)Lan, W.; Li, S.; Xu, J.; Luo, G. Chem. Eng. J. 2012, 181–182, 828.
12. T. H. Eun S. -H. Kim W. -J. Jeong S. -J. Jeon S. -H. Kim S. -M. Yang 2009 Chem. Mater. 21 201.
13. (a) Cottam, B.-F.; Krishnadasan, S.; deMello, A. J.; deMello, J. C.; Shaffer, M. S. P. Lab Chip 2007, 7, 167;
(b)Khan, S. A.; Jensen, K. F. Adv. Mater. 2007, 19, 2556.
14. C. -S. Kim B. K. Moon J. -H. Park B. -C. Choi H. -J. Seo 2003 J. Cryst. Growth 257 309.
15. (a) Jun, J. W.; Jung, Y.-Y.; Cheon, J. J. Am. Chem. Soc. 2001, 124, 615;
(b)Nguyen, T. D.; Mrabet, D.; Do, T.-O. J. Phys. Chem. C 2008, 112, 15226.
16. C. -T. Dinh T. -D. Nguyen F. Kleitz T. -O. Do 2009 ACS Nano 3 3737.
17. S. E. Lohse C. J. Murphy 2012 J. Am. Chem. Soc. 134 15607.
18. (a) Ju, X.; Li, D.; Li, W.; Ya, W.; Biana F. Adv. Synth. Catal. 2012, 354, 3561. For similar reactions see:
(b)Marinkovic, S.; Hoffmann, N. Chem. Commun. 2001, 1576;
(c)Marinkovic, S.; Hoffmann, N. Internat. J. Photoenergy 2003, 5, 175;
(d)Marinkovic, S.; Hoffmann, N. Eur. J. Org. Chem. 2004, 3102.
19. For a recent overview on continuous-flow photochemistry, see: (a) Knowles, J. P.; Elliot, L. D.; Booker-Millburn, K. I. Beilstein J. Org. Chem. 2012, 8, 2025;
(b)Oelgemoeller, M. Chem. Eng. Technol. 2012, 35, 1144.
20. For similar reactor setup, see: Huvaere, K. Green Process Synth. 2012, 1, 533.
21. (a) Roy, B.; Swan, G. A J. Chem. Soc. C 1969, 1886;
(b)Murata, S.; Teramoto, K.; Miura, M.; Nomura, M. Heterocycles 1993, 9, 2147.