View More View Less
  • 1 Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS UMR 7504, 23 rue du Læss, BP 43, F-67034 Strasbourg 2, France
  • 2 Department of Physical Chemistry and Microreaction Technology, Institute of Physics, Technical University of Ilmenau, Weimarer Straße 32, PF 100565, D-98684 Ilmenau, Germany
  • 3 Institut Charles Sadron (ICS), CNRS UPR 22, Université de Strasbourg, 23 rue Læss, F-67083 Strasbourg, France
  • 4 Groupe d'Intensification et d'Intégration des Procédés Polymères (G2IP), Institut de Chimie et Procédés pour l?Énergie, l?Environnement et la Santé (ICPEES)-UMR 7515 CNRS, École Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 rue Becquerel, F-67087 Strasbourg, France
Open access

This paper presents a new route to the synthesis of uniform and size-controlled inorganic/organic composite microparticles by means of microreaction technology. Au-nanoparticles in the range of 3 to 14 nm are synthesized by reduction of tetrachloroauric acid, while ZnO-nanoparticles (200–2000 nm) are synthesized in a continuous-flow two-step process using microtube arrangements for microsegmented flow. Both inorganic nanoparticles have a well-controlled size and narrow size distribution. Upon surface modification, the nanoparticles are then mixed on one hand with an acrylate-based monomer and, on the other hand, with an aqueous solution of acrylamide. Both solutions were then emulsified into uniform core-shell droplets by means of a capillary-based microfluidic device. Droplet's shell was hardened through UV-induced polymerization, whereas the core led to a hydrogel upon thermal-induced polymerization. Core-shell polymer microparticles (200–300 µm) with inorganic nanoparticles selectively incorporated into the core and the shell are thus obtained as proven by extensive morphological characterizations using electronic and optical microscopies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Chang, Z.; Serra, C. A.; Bouquey, M.; Kraus, I.; Li, S.; Köhler, J. M. Nanotechnology, 2010, 21, 015605.

  • 2. Cottam, B. F.; Krishnadasan, S.; DeMello, A. J.; DeMello, J. C.; Shaffer, M. S. P. Lab. Chip. 2007 167–169.

  • 3. Donnet, M.; Jongen, N.; Lemaitre, J.; Bowen, P. J. Mat. Sci. Lett. 2000, 19, 749750.

  • 4. Guillemet-Fritsch, S.; Aoun-Habbache, S.; Sarrias, J.; Rousset, A.; Jongen, N.; Donnet, M.; Bowen, P.; Lemaitre J. Solid State Ionics 2004, 171, 135140.

    • Search Google Scholar
    • Export Citation
  • 5. Winterton, J. D.; Myers, D. R.; Lippmann, J. M.; Pisano, A. P.; Doyle, F. M. J. Nanopart. Res. 2008, 10, 893905.

  • 6. Wagner, J.; Köhler, J. M. Nano Lett. 2005, 5, 685691.

  • 7. Weng, C.-H. ; Huang, C.-C.; Yeh, C.-S.; Lei, H-Y.; Lee, G.-B. J. Micromech. Microengn. 2008, 18, 035019.

  • 8. Cabeza, V. S.; Kuhn, S.; Kulkarni, A. A.; Jensen, K. F. Langmuir 2012, 28, 70077013.

  • 9. Knauer, A.; Thete, A.; Li, S.; Romanus, H.; Csaki, A.; Fritzsche, W.; Köhler, J. M. Chem. Eng. J. 2011, 116, 11641169.

  • 10. Knauer, A.; Csaki, A.; Möller, F.; Hühn, C.; Fritzsche, W.; Köhler, J. M. J. Phys. Chem. 2012, 116, 92519258.

  • 11. Gross, G. A.; Hamann, C.; Günther, M.; Köhler, J. M. Chem. Eng. Technol. 2007, 30, 341346.

  • 12. Köhler, J. M.; Kraus, I.; Faerber, J.; Serra, Ch. J. Mat. Sci. 2013, 48, 21582166.

  • 13. Köhler, J. M.; März, A.; Popp, J.; Knauer, A.; Kraus, I.; Faerber, J.; Serra, C. Anal. Chem. 2013, 85, 313318.

  • 14. Link, S.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. 1999, B103, 35293533.

  • 15. Moskovits, M.; Smova-Sloufova, I; Vlcková, B. J. Chem. Phys. 2002, 116, 1043510446.

  • 16. Rodriguez-González, B.; Burrows, A.; Wanatabe, M.; Kiely, C. J.; Liz Marzán, L. M. J. Mat. Chem. 2005, 15, 17551759.

  • 17. Teh, S.-Y. ; Lin, R.; Hung, L.-H.; Lee, A. P. Lab Chip 2008, 8, 198220.

  • 18. Aoki, N.; Mae, K. Chem. Eng. J. 2006, 118, 189197.

  • 19. Köhler, J. M.; Held, M.; Hübner, U.; Wagner, J. Chem. Eng. Tech. 2007, 30, 347354.

  • 20. Li, S.; Günther, P. M.; Köhler, J. M. J. Chem. Eng. 2009, 42, 338345.

  • 21. Serra, C.; Chang, Z. Chem. Eng. Tech. 2008, 31, 10991115.

  • 22. Serra, C.; Berton, N.; Bouquey, M.; Prat, L.; Hadziioannou, G. Langmuir 2007, 23, 77457750.

  • 23. Sawyer, L. C.; Grubb, D. T. Polymer microscopy; Chapman and Hall, London, UK, 1996.

  • 24. Jönsson, J.-E. ; Karlsson, O. J.; Hassender, H.; Törnell, B. Eur. Poly. J. 2007, 43, 13221332.

  • 25. Kirner, T.; Albert, J.; Günther, M.; Mayer, G.; Reinhäckel, K.; Köhler, J. M. Chem. Eng. J. 2004, 101, 6574.

  • 26. Köhler, J. M.; Wagner, J.; Albert, J. J. Mat. Chem. 2005, 15, 19241930.

  • 27. Polte, J.; Ahner, T.; Delissen, F.; et al. J. Am. Chem. Soc. 2010, 132, 12961301.

  • 28. Li, S.; Meierott, S.; Köhler, J. M. Chem. Eng. J. 2010, 165, 958965.

  • 29. Köhler, J. M.; Li, S.; Knauer, A. Chem. Eng. Technol. 2013, 36, 887899.

  • 30. Chang, Z.; Serra, C.; Bouquey, M.; Prat, L.; Hadziioannou, G. Lab. Chip. 2009, 9, 30073011.

  • 31. Yobas, L.; Martens, S.; Ong, W. L.; Ranganathan, N. Lab. Chip. 2006, 6, 10731079.