View More View Less
  • 1 Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284, USA
  • 2 Nanotechnology and Nanometrology Laboratory, National Institute for Standards, (NIS), Giza, 12211, Egypt
Restricted access

Abstract

Cobalt nanoparticles were synthesized using continuous-flow (CF) chemistry in a stainless steel microreactor for the first time at high output based on the ethanol hydrazine alkaline system (EHAS) producing a yield as high as 1 g per hour [1, 2]. Continuous-flow (CF) synthetic chemistry provides uninterrupted product formation allowing for advantages including decreased preparation time, improved product quality, and greater efficiency. This successful synthetic framework in continuous-flow of magnetic Co nanoparticles indicates feasibility for scaled-up production. The average particle size by transmission electron microscopy (TEM) of the as-synthesized cobalt was 30±10 nm, average crystallite size by Scherrer analysis (fcc phase) was 15±2 nm, and the estimated magnetic core size was 6±1 nm. Elemental surface analysis (X-ray photoelectron spectroscopy [XPS]) indicates a thin CoO surface layer. As-synthesized cobalt nanoparticles possessed a saturation magnetization (M s) of 125±1 emu/g and coercivity (H c) of 120±5 Oe. The actual M s is expected to be greater since the as-synthesized cobalt mass was not weight-corrected (nonmagnetic mass: reaction by-products, solvent, etc.). Our novel high-output, continuous-flow production (>1 g/hr) of highly magnetic cobalt nanoparticles opens an avenue toward industrial-scale production of several other single element magnetic nanomaterials.

  • 1. Guo, F.; Zheng, H.; Yang, Z.; Qian, Y. Mater. Lett. 2002, 56, 906.

  • 2. Gibson, C. P.; Putzer, K. J. Science 1995, 267, 1338.

  • 3. El-Gendy, A. A.; Ibrahim, E. M. M.; Khavrus, V. O.; Krupskaya, Y.; Hampel, S.; Leonhardt, A.; Büchner, B.; Klingeler, R. Carbon 2009, 47, 2821.

    • Search Google Scholar
    • Export Citation
  • 4. Majewski, A. P.; Stahlschmidt, U.; Jérôme, V.; Freitag, R.; Müller, A. H. E.; Schmalz, H. Biomacromolecules 2013, 14, 3081.

  • 5. Li, Y.; Beija, M.; Laurent, S.; Elst, L. V.; Muller, R. N.; Duong, H. T. T.; Lowe, A. B.; Davis, T. P.; Boyer, C. Macromolecules 2012, 45, 4196.

    • Search Google Scholar
    • Export Citation
  • 6. Osorio-Cantillo, C.; Santiago-Miranda, A. N.; Perales-Perez, O.; Yin, X. J. Appl. Phys. 2012, 111, 07B324.

  • 7. Giesen, B.; Orthner, H. R.; Kowalik, A.; Roth, P. Chem. Eng. Sci. 2004, 59, 2201.

  • 8. LaLena, J. N.; Cleary, D. A.; Carpenter, E. E.; Dean, N. F. Inorganic Materials Synthesis and Fabrication; Wiley Interscience: Hoboken, NJ, 2008.

    • Search Google Scholar
    • Export Citation
  • 9. McMullen, J. P.; Jensen K. F. Annu. Rev. Anal. Chem. 2010, 3, 19.

  • 10. Razzaq, T.; Glasnov, T. N.; Kappe, C. O. Eur. J. Org. Chem. 2009, 9, 1321.

  • 11. Hassan, A. A.; Sandre, O.; Cabuil, V. Angew. Chem., Int. Ed. 2010, 49, 6268.

  • 12. Marre, S.; Jensen, K. F. Chem. Soc. Rev. 2010, 39, 1183.

  • 13. Shalom, D.; Wootton, R. C. R.; Winkle, R. F.; Cottam, B. F.; Vilar, R.; deMello, A. J.; Wilde, C. P. Mater. Lett. 2007, 61, 1146.

  • 14. Weng, C. H.; Huang, C. C.; Yeh, C. S.; Lee, H. Y.; Lee, G. B. J. Micromech. Microeng. 2008, 18, 035019.

  • 15. Shestopalov, I ; Tice, J. D.; Ismagilov, R. F. Lab Chip 2004, 4, 316.

  • 16. Chen, C. H.; Shah, R. K.; Abate, A. R. Weitz, D. A. Langmuir 2009, 25, 4320.

  • 17. Gross, E ; Shu, X.-Z.; Alayoglu, S.; Bechtel, H. A. Martin, M. C. Toste, F. D.; Somorjai, G. A. J. Am. Chem. Soc. 2014, 136, 3624.

  • 18. Hassan, A. A.; Sandre, O.; Cabuil, V.; Tabeling P. Chem. Commun. 2008, 1783.

  • 19. Hassan, A. A.; Sandre, O.; Neveu, S.; Cabuil, V. Angew. Chem., Int. Ed. 2009, 48, 2342.

  • 20. Bubendor, J. L.; Enyb, C. M.; Beaurepaire, E.; Panissod, P.; Bucher, J. P. Eur. Phys. J. B. 2000, 17, 635.

  • 21. De la Peña-O'Shea, V. A.; Moreira, I. P. R.; Roldán; A.; Illas, F. J. Chem. Phys. 2010, 133, 024701.

  • 22. Barr, T. L. J. Phys. Chem. 1978, 82, 1801.

  • 23. Crist, V. Handbook of Monochromatic XPS Spectra — The Elements and Native Oxides; XPS International Inc.: Mountain View, CA, 1999; Vol. 1.

    • Search Google Scholar
    • Export Citation
  • 24. Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M; Gerson, A. R. St. C. J. Appl. Surf. Sci. 2011, 257, 2717.

  • 25. Yaacob, I. I.; Nunes, A. C.; Bose, A.; Shah, D. O. J. Colloid Interface Sci. 1994, 168, 289.

  • 26. Crangle, J. The Magnetic Properties of Solids; Edward Arnold: London, 1977.

  • 27. Carpenter, E. E. J. Magn. Magn. Mater. 2001, 225, 17.

  • 28. El-Gendy, A. A.; Khavrus, V. O.; Hampel, S.; Leonhardt A.; Büchner B.; Klingeler, R. J. Phys. Chem. C 2010, 114, 10745.

  • 29. Glaspell, G.; Abdelsayed, V.; Saoud, K. M.; El-Shall, S. Pure Appl. Chem. 2006, 78, 1667.

  • 30. Deepak, S.; Chauhan, R.; Kumar, S. J. Mater. Sci. 2014, 25, 124.

  • 31. Liu, T.; Zhou, P. H.; Xie, J. L.; Deng, L. J. J. Appl. Phys. 2011, 110, 033918.

  • 32. Kammel, M.; Wiedenmann, A.; Heinemann, A.; Bönnemann, H.; Matoussevitch, N. Phys. B: Phys. Condens. Matter 2006, 385, 457.

  • 33. Desvaux, C.; Amiensl, C.; Fejes, P.; Renaud, P.; Respaud, M.; Lecante, P.; Snoeck, E.; Chaudret, B. Nat. Mater. 2005, 4, 750.