View More View Less
  • 1 Kyushu University Interdisciplinary Graduate School of Engineering Sciences 6–1 Kasuga-koen Kasuga 816-8580 Japan
  • 2 Kyushu University Institute for Materials Chemistry and Engineering 6–1 Kasuga-koen Kasuga 816-8580 Japan
  • 3 Hokkaido University Faculty of Engineering Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
  • 4 Nagoya University, Furo-cho Graduate School of Engineering Chikusa-ku Nagoya 464-8603 Japan
Restricted access

We report a method for the generation and subsequent reaction of ynolates in a flow microreactor via a stop-flow process. This procedure allowed for the synthesis of ynolates at ambient temperature within 11 min via a Li–Br exchange reaction with sec-butyllithium, whereas the corresponding batch process generally requires low temperature control and extended reaction times of up to 1 h. The stop-flow method is especially useful for optimizing the reaction time without having to use various microtube lengths. The resulting ynolates were applied to the olefination of carbonyl compounds and to pyrrole synthesis. These results indicate the practical utility of the ynolate reaction and should contribute to progress in flash chemistry.

  • For reviews, see: (a) Shindo, M. Tetrahedron 2007, 63, 10–36; (b) Shindo, M. The Chemistry of Metal Ynolates. In The Chemistry of Metal Enolates; Patai Series: The Chemistry of Functional Groups; Zabicky, J., Ed.; John Wiley & Sons, Chichester, UK, 2009; 739–786.

  • (a) Shindo, M.; Sato, Y.; Shishido, K. Tetrahedron 1998, 54, 2411–2422; (b) Shindo, M.; Matsumoto, K.; Shishido, K. Org. Synth. 2007, 84, 11–21.

  • Umezu, S.; Yoshiiwa, T.; Tokeshi, M.; Shindo, M. Tetrahedron Lett. 2014, 55, 1822–1825.

  • (a) Shindo, M.; Sato, Y.; Shishido, K.; J. Org. Chem. 2000, 65, 5443–5445; (b) Shindo, M.; Matsumoto, K.; Mori, S.; Shishido, K. J. Am. Chem. Soc. 2002, 124, 6840–6841; (c) Shindo, M.; Sato, Y.; Yoshikawa, T.; Koretsune, R.; Shishido, K. J. Org. Chem. 2004, 69, 3912–3916; (d) Mori, S.; Shindo, M. Org. Lett. 2004, 6, 3945–3948; (e) Shindo, M.; Yoshikawa, T.; Itou, Y.; Mori, S.; Nishii, T.; Shishido, K. Chem. Eur. J. 2006, 12, 524–536; (f) Shindo, M.; Kita, T.; Kumagai, T.; Matsumoto, K.; Shishido, K. J. Am. Chem. Soc. 2006, 128, 1062–1063; (g) Yoshikawa, T.; Mori, S.; Shindo, M. J. Am. Chem. Soc. 2009, 131, 2092–2093; (h) Umezu, S.; Shindo, M. Tetrahedron Lett. 2013, 54, 6871–6873. For reviews, see: (i) Shindo, M.; Mori, S. Synlett 2008, 2231–2243; (j) Shindo, M.; Matsumoto, K. Top. Curr. Chem. 2012, 327, 1–32.

  • (a) Shindo, M.; Sato, Y.; Shishido, K. J. Am. Chem. Soc. 1999, 121, 6507–6508; (b) Shindo, M.; Matsumoto, K.; Sato, Y.; Shishido, K. Org. Lett. 2001, 3, 2029–2031; (c) Shindo, M.; Sato, Y.; Shishido, K. J. Org. Chem. 2001, 66, 7818–7824.

  • Shindo, M.; Yoshimura, Y.; Hayashi, M.; Soejima, H.; Yoshikawa, T.; Matsumoto, K.; Shishido, K. Org Lett. 2007, 9, 1963–1966.

  • (a) Haner, R., Laube, T., Seebach, D. J. Am. Chem. Soc. 1985, 107, 5396–5403; (b) Tomioka, K., Shindo, M., Koga, K. J. Org. Chem. 1990, 55, 2276–2277.

  • Bates, R. B.; Kroposki, L. M.; Potter, D. E. J. Org. Chem. 1972, 37, 560–562.

  • (a) Suga, S.; Yamada, D.; Yoshida, J. Chem Lett. 2010, 39, 404–406. For recent reviews, see: (b) Ley, S. V. Chem. Rec. 2012, 12, 378–390; (c) Wegner, J.; Ceylan, S.; Kirschning, A. Adv. Synth. Catal. 2012, 354, 17–57; (d) Wegner, J.; Ceylan, S.; Kirschning, A. Chem. Commun. 2011, 47, 4583–4592; (e) Geyer, K.; Gustafsson, T.; Seeberger, P. H. Synlett 2009, 2382–2391; (f) Yoshida, J.; Nagaki, A.; Yamada, T. Chem. Eur. J. 2008, 14, 7450–7459; (g) Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I. Synlett 2008, 151–163.

  • Representative lithium/halogen exchange reactions in flow microreactors: (a) Usutani, H.; Tomida, Y.; Nagaki, A.; Okamoto, H.; Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2007, 129, 3046–3047; (b) Nagaki, A.; Tomida, Y.; Usutani, H.; Kim. H.; Takabayashi, N.; Nokami, T.; Okamoto, H.; Yoshida, J. Chem. Asian J. 2007, 2, 1513–1523; (c) Nagaki, A.; Kim, H.; Yoshida, J. Angew. Chem., Int. Ed. 2008, 47, 7833–7836; (d) Goto, S.; Velder, J.; Sheikh, S. E.; Sakamoto, Y.; Mitani, M.; Elmas, S.; Adler, A.; Becker, A.; Neudorfl, J.-M.; Lex, J.; Schmalz, H.-G. Synlett 2008, 1361–1365; (e) Tomida, Y.; Nagaki, A.; Yoshida, J. Org. Lett. 2009, 11, 3614–3617; (f) Nagaki, A.; Kim, H.; Yoshida, J. Angew. Chem., Int. Ed. 2009, 48, 8063–8065; (g) Nagaki, A.; Takizawa, E.; Yoshida, J. J. Am. Chem. Soc. 2009, 131, 1654–1655; (h) Nagaki, A.; Kenmoku, A.; Moriwaki, Y.; Hayashi, A.; Yoshida, J. Angew. Chem., Int. Ed. 2010, 49, 7543–7547; (i) Nagaki, A.; Kim, H.; Usutani, H.; Matsuo, C.; Yoshida, J. Org. Biomol. Chem. 2010, 8, 1212–1217; (j) Asai, T.; Takata, A.; Ushiogi, Y.; Iinuma, Y.; Nagaki, A.; Yoshida, J. Chem. Lett. 2011, 40, 393–395; (k) Nagaki, A,; Yamada, S.; Doi, M.; Tomida, Y.; Takabayashi, N.; Yoshida, J. Green Chem. 2011, 13, 1110–1113; (l) Kim. H.; Nagaki, A.; Yoshida, J. Nature Commun. 2011, 2, 1264/1–1264/2; (m) Nagaki, A.; Takahashi, Y.; Yamada, S.; Matsuo, C.; Haraki, S.; Moriwaki, Y.; Kim, S.; Yoshida, J. J. Flow. Chem. 2012, 2, 70–72; (n) Nagaki, A.; Matsuo, C.; Kim, S.; Saito, K.; Miyazaki, A.; Yoshida, J. Angew. Chem., Int. Ed. 2012, 51, 3245–3248; (o) Nagaki, A.; Ichinari, D.; Yoshida, J. Chem. Commun. 2013, 49, 3242–3244; (p) Nagaki, A.; Uesugi, Y.; Kim, H.; Yoshida, J. Chem. Asian J. 2013, 8, 705–708; (q) Nagaki, A. J. Synth. Org. Chem., Jpn. 2013, 71, 1002–1019.