We report a method for the generation and subsequent reaction of ynolates in a flow microreactor via a stop-flow process. This procedure allowed for the synthesis of ynolates at ambient temperature within 11 min via a Li–Br exchange reaction with sec-butyllithium, whereas the corresponding batch process generally requires low temperature control and extended reaction times of up to 1 h. The stop-flow method is especially useful for optimizing the reaction time without having to use various microtube lengths. The resulting ynolates were applied to the olefination of carbonyl compounds and to pyrrole synthesis. These results indicate the practical utility of the ynolate reaction and should contribute to progress in flash chemistry.
For reviews, see: (a) Shindo, M. Tetrahedron2007, 63, 10–36; (b) Shindo, M. The Chemistry of Metal Ynolates. In The Chemistry of Metal Enolates; Patai Series: The Chemistry of Functional Groups; Zabicky, J., Ed.; John Wiley & Sons, Chichester, UK, 2009; 739–786.
(a) Shindo, M.; Sato, Y.; Shishido, K. Tetrahedron1998, 54, 2411–2422; (b) Shindo, M.; Matsumoto, K.; Shishido, K. Org. Synth. 2007, 84, 11–21.
Umezu, S.; Yoshiiwa, T.; Tokeshi, M.; Shindo, M. Tetrahedron Lett.2014, 55, 1822–1825.
(a) Shindo, M.; Sato, Y.; Shishido, K.; J. Org. Chem.2000, 65, 5443–5445; (b) Shindo, M.; Matsumoto, K.; Mori, S.; Shishido, K. J. Am. Chem. Soc. 2002, 124, 6840–6841; (c) Shindo, M.; Sato, Y.; Yoshikawa, T.; Koretsune, R.; Shishido, K. J. Org. Chem. 2004, 69, 3912–3916; (d) Mori, S.; Shindo, M. Org. Lett.2004, 6, 3945–3948; (e) Shindo, M.; Yoshikawa, T.; Itou, Y.; Mori, S.; Nishii, T.; Shishido, K. Chem. Eur. J. 2006, 12, 524–536; (f) Shindo, M.; Kita, T.; Kumagai, T.; Matsumoto, K.; Shishido, K. J. Am. Chem. Soc. 2006, 128, 1062–1063; (g) Yoshikawa, T.; Mori, S.; Shindo, M. J. Am. Chem. Soc.2009, 131, 2092–2093; (h) Umezu, S.; Shindo, M. Tetrahedron Lett. 2013, 54, 6871–6873. For reviews, see: (i) Shindo, M.; Mori, S. Synlett2008, 2231–2243; (j) Shindo, M.; Matsumoto, K. Top. Curr. Chem. 2012, 327, 1–32.
(a) Shindo, M.; Sato, Y.; Shishido, K. J. Am. Chem. Soc.1999, 121, 6507–6508; (b) Shindo, M.; Matsumoto, K.; Sato, Y.; Shishido, K. Org. Lett. 2001, 3, 2029–2031; (c) Shindo, M.; Sato, Y.; Shishido, K. J. Org. Chem. 2001, 66, 7818–7824.
Shindo, M.; Yoshimura, Y.; Hayashi, M.; Soejima, H.; Yoshikawa, T.; Matsumoto, K.; Shishido, K. Org Lett.2007, 9, 1963–1966.
(a) Haner, R., Laube, T., Seebach, D. J. Am. Chem. Soc.1985, 107, 5396–5403; (b) Tomioka, K., Shindo, M., Koga, K. J. Org. Chem.1990, 55, 2276–2277.
Bates, R. B.; Kroposki, L. M.; Potter, D. E. J. Org. Chem.1972, 37, 560–562.
(a) Suga, S.; Yamada, D.; Yoshida, J. Chem Lett.2010, 39, 404–406. For recent reviews, see: (b) Ley, S. V. Chem. Rec. 2012, 12, 378–390; (c) Wegner, J.; Ceylan, S.; Kirschning, A. Adv. Synth. Catal. 2012, 354, 17–57; (d) Wegner, J.; Ceylan, S.; Kirschning, A. Chem. Commun. 2011, 47, 4583–4592; (e) Geyer, K.; Gustafsson, T.; Seeberger, P. H. Synlett2009, 2382–2391; (f) Yoshida, J.; Nagaki, A.; Yamada, T. Chem. Eur. J. 2008, 14, 7450–7459; (g) Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I. Synlett2008, 151–163.
Representative lithium/halogen exchange reactions in flow microreactors: (a) Usutani, H.; Tomida, Y.; Nagaki, A.; Okamoto, H.; Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2007, 129, 3046–3047; (b) Nagaki, A.; Tomida, Y.; Usutani, H.; Kim. H.; Takabayashi, N.; Nokami, T.; Okamoto, H.; Yoshida, J. Chem. Asian J.2007, 2, 1513–1523; (c) Nagaki, A.; Kim, H.; Yoshida, J. Angew. Chem., Int. Ed.2008, 47, 7833–7836; (d) Goto, S.; Velder, J.; Sheikh, S. E.; Sakamoto, Y.; Mitani, M.; Elmas, S.; Adler, A.; Becker, A.; Neudorfl, J.-M.; Lex, J.; Schmalz, H.-G. Synlett2008, 1361–1365; (e) Tomida, Y.; Nagaki, A.; Yoshida, J. Org. Lett.2009, 11, 3614–3617; (f) Nagaki, A.; Kim, H.; Yoshida, J. Angew. Chem., Int. Ed. 2009, 48, 8063–8065; (g) Nagaki, A.; Takizawa, E.; Yoshida, J. J. Am. Chem. Soc.2009, 131, 1654–1655; (h) Nagaki, A.; Kenmoku, A.; Moriwaki, Y.; Hayashi, A.; Yoshida, J. Angew. Chem., Int. Ed.2010, 49, 7543–7547; (i) Nagaki, A.; Kim, H.; Usutani, H.; Matsuo, C.; Yoshida, J. Org. Biomol. Chem.2010, 8, 1212–1217; (j) Asai, T.; Takata, A.; Ushiogi, Y.; Iinuma, Y.; Nagaki, A.; Yoshida, J. Chem. Lett.2011, 40, 393–395; (k) Nagaki, A,; Yamada, S.; Doi, M.; Tomida, Y.; Takabayashi, N.; Yoshida, J. Green Chem.2011, 13, 1110–1113; (l) Kim. H.; Nagaki, A.; Yoshida, J. Nature Commun.2011, 2, 1264/1–1264/2; (m) Nagaki, A.; Takahashi, Y.; Yamada, S.; Matsuo, C.; Haraki, S.; Moriwaki, Y.; Kim, S.; Yoshida, J. J. Flow. Chem.2012, 2, 70–72; (n) Nagaki, A.; Matsuo, C.; Kim, S.; Saito, K.; Miyazaki, A.; Yoshida, J. Angew. Chem., Int. Ed.2012, 51, 3245–3248; (o) Nagaki, A.; Ichinari, D.; Yoshida, J. Chem. Commun. 2013, 49, 3242–3244; (p) Nagaki, A.; Uesugi, Y.; Kim, H.; Yoshida, J. Chem. Asian J. 2013, 8, 705–708; (q) Nagaki, A. J. Synth. Org. Chem., Jpn.2013, 71, 1002–1019.