View More View Less
  • 1 National University of Singapore Department of Chemical and Biomolecular Engineering 4 Engineering Drive 4 E5-02-28 117576 Singapore
Restricted access

In this paper, we present detailed experimental and modeling studies of a recently developed triphasic segmented flow millireactors for rapid nanoparticle-catalyzed gas–liquid reactions. We first present detailed observations of the hydrodynamics and flow regimes in a pseudo-biphasic mode of operation, which enable the design and selection of optimal operating conditions for the triphasic millireactor. We particularly focus on and analyze the presence of wetting films of the organic phase on the reactor walls at high flow speeds, a consequence of the phenomenon of forced wetting, which is a key ingredient for optimal reactor performance. Next, we describe the development of a simple phenomenological model, incorporating the key mass transport steps that accurately captures the observed experimental trends for the rhodium nanoparticle (RhNP) catalyzed hydrogenation of a model substrate (1-hexene). We further discuss and analyze the consequences of this model.

Supplementary Materials

    • Supplementary Material
    • Supplementary Material
    • Supplementary Material
    • Supplementary Material
    • Supplementary Material

Manuscript Submission: HERE

  • Impact Factor (2019): 3.622
  • Scimago Journal Rank (2019): 0.795
  • SJR Hirsch-Index (2019): 20
  • SJR Quartile Score (2019): Q1 Chemistry (miscellenous)
  • SJR Quartile Score (2019): Q1 Fluid Flow and Transfer Processes
  • SJR Quartile Score (2019): Q2 Organic Chemistry
  • Impact Factor (2018): 2.277
  • Scimago Journal Rank (2018): 0.58
  • SJR Hirsch-Index (2018): 17
  • SJR Quartile Score (2018): Q1 Fluid Flow and Transfer Processes
  • SJR Quartile Score (2018): Q2 Organic Chemistry

Journal of Flow Chemistry
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Áramlásos Kémiai Tudományos Társaság
Founder's
Address
H-1031 Budapest, Hungary Záhony utca 7.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-249X (Print)
ISSN 2063-0212 (Online)